994 resultados para Coal – Analysis
Resumo:
Prepared in cooperation with U.S. Environmental Protection Agency, Office of Environmental Engineering and Technology.
Resumo:
The objective of this study was to evaluate the potential of near infrared spectroscopy (NIRS) associated with multivariate statistics to distinguish coal produced from wood of planted and native forests. Timber forest species from the C errado (Cedrela sp., Aspidosperma sp., Jacaranda sp. and unknown species) and Eucalyptus clones from forestry companies (Vallourec and Cenibra) were carbonized in the final temperatures of 300, 500 and 700°C. In each heat treatment were carbonized 15 specimens of each vegetal material totaling 270 samples (3 treatments x 15 reps x 6 materials) produced in 18 carbonization (3 treatments x 6 materials). The acquisition of the spectra of coals in the near infrared using a spectrometer was performed. Principal Component Analysis (PCA) and Partial Least Squares Regression (PLS-R) were carried out in the spectra. NIR Spectroscopy associated with PCA was not able to differentiate charcoals produced from native and planted woods when utilizing all carbonized samples at different temperatures in the same analysis; The PCA of all charcoals was able to distinguish the samples depending on temperature in which they were carbonized. However, the separation of native and planted charcoal was possible when the samples were analyzed separately by final temperature. The prediction of native or planted classes by PLS-R presented better performance for samples carbonized at 300°C followed by those at 500°C, 700°C and for all together.
Resumo:
Colorimetric analysis of roadway dust is currently a method for monitoring the incombustible content of mine roadways within Australian underground coal mines. To test the accuracy of this method, and to eliminate errors of judgement introduced by human operators in the analysis procedure, a number of samples were tested using scanning software to determine absolute greyscale values. High variability and unpredictability of results was noted during this testing, indicating that colorimetric testing is sensitive to parameters within the mine that are not currently reproduced in the preparation of reference samples. This was linked to the dependence of colour on particle surface area, and hence also to the size distribution of coal particles within the mine environment. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The personal computer revolution has resulted in the widespread availability of low-cost image analysis hardware. At the same time, new graphic file formats have made it possible to handle and display images at resolutions beyond the capability of the human eye. Consequently, there has been a significant research effort in recent years aimed at making use of these hardware and software technologies for flotation plant monitoring. Computer-based vision technology is now moving out of the research laboratory and into the plant to become a useful means of monitoring and controlling flotation performance at the cell level. This paper discusses the metallurgical parameters that influence surface froth appearance and examines the progress that has been made in image analysis of flotation froths. The texture spectrum and pixel tracing techniques developed at the Julius Kruttschnitt Mineral Research Centre are described in detail. The commercial implementation, JKFrothCam, is one of a number of froth image analysis systems now reaching maturity. In plants where it is installed, JKFrothCam has shown a number of performance benefits. Flotation runs more consistently, meeting product specifications while maintaining high recoveries. The system has also shown secondary benefits in that reagent costs have been significantly reduced as a result of improved flotation control. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Nowadays, the concrete production sector is challenged by attempts to minimize the usage of raw materials and energy consumption, as well as by environmental concerns. Therefore, it is necessary to choose better options, e.g. new technologies or materials with improved life-cycle performance. One solution for using resources in an efficient manner is to close the materials' loop through the recycling of materials that result either from the end-of-life of products or from being the by-product of an industrial process. It is well known that the production of Portland cement, one of the materials most used in the construction sector, has a significant contribution to the environmental impacts, mainly related with carbon dioxide emission. Therefore, the study and utilization of by-products or wastes usable as cement replacement in concrete can supply more sustainable options, provided that these type of concrete produced has same durability and equivalent quality properties as standard concrete. This work studied the environmental benefits of incorporating different percentages of two types of fly ashes that can be used in concrete as cement replacement. These ashes are waste products of power and heat production sectors using coal or biomass as fuels. The results showed that both ashes provide a benefit for the concrete production both in terms of environmental impact minimization and a better environmental performance through an increase in cement replacement. It is possible to verify that the incorporation of fly ashes is a sustainable option for cement substitution and a possible path to improve the environmental performance of the concrete industry.
Resumo:
Combustion, Coal, Droplet Combustion, Boudouard Reaction
Resumo:
The main purpose of this work is the identification and quantification of phenolic compounds in coal tar samples from a ceramics factory in Cocal (SC), Brazil. The samples were subjected to preparative scale liquid chromatography, using Amberlyst A-27TM ion-exchange resin as stationary phase. The fractions obtained were classified as "acids" and "BN" (bases and neutrals). The identification and quantification of phenols, in the acid fraction, was made by gas chromatography coupled to mass spectrometry (GC/MS). Nearly twenty-five phenols were identified in the samples and nine of them were also quantified. The results showed that coal tar has large quantities of phenolic compounds of industrial interest.
Resumo:
Knowledge of coal combustion kinetics is crucial for burner design. This work aims to contribute on this issue by determining the kinetics of a particular Brazilian bituminous coal. Non-isothermal thermogravimetry was applied for determining both the pre-exponential factor and the activation energy. Coal samples of 10 mg and 775 mm mean size were used in synthetic air atmospheres (21 % O2). Heating rates from 10 to 50 ºC/min were applied until the temperature reached 850 ºC, which was kept constant until burnout. The activation energy for the primary and the secondary combustion resulted, respectively, in 135.1 kJ/mol and 85.1 kJ/mol.
Resumo:
This paper examines the life cycle GHG emissions from existing UK pulverized coal power plants. The life cycle of the electricity Generation plant includes construction, operation and decommissioning. The operation phase is extended to upstream and downstream processes. Upstream processes include the mining and transport of coal including methane leakage and the production and transport of limestone and ammonia, which are necessary for flue gas clean up. Downstream processes, on the other hand, include waste disposal and the recovery of land used for surface mining. The methodology used is material based process analysis that allows calculation of the total emissions for each process involved. A simple model for predicting the energy and material requirements of the power plant is developed. Preliminary calculations reveal that for a typical UK coal fired plant, the life cycle emissions amount to 990 g CO2-e/kWh of electricity generated, which compares well with previous UK studies. The majority of these emissions result from direct fuel combustion (882 g/kWh 89%) with methane leakage from mining operations accounting for 60% of indirect emissions. In total, mining operations (including methane leakage) account for 67.4% of indirect emissions, while limestone and other material production and transport account for 31.5%. The methodology developed is also applied to a typical IGCC power plant. It is found that IGCC life cycle emissions are 15% less than those from PC power plants. Furthermore, upon investigating the influence of power plant parameters on life cycle emissions, it is determined that, while the effect of changing the load factor is negligible, increasing efficiency from 35% to 38% can reduce emissions by 7.6%. The current study is funded by the UK National Environment Research Council (NERC) and is undertaken as part of the UK Carbon Capture and Storage Consortium (UKCCSC). Future work will investigate the life cycle emissions from other power generation technologies with and without carbon capture and storage. The current paper reveals that it might be possible that, when CCS is employed. the emissions during generation decrease to a level where the emissions from upstream processes (i.e. coal production and transport) become dominant, and so, the life cycle efficiency of the CCS system can be significantly reduced. The location of coal, coal composition and mining method are important in determining the overall impacts. In addition to studying the net emissions from CCS systems, future work will also investigate the feasibility and technoeconomics of these systems as a means of carbon abatement.
Resumo:
The Federal Coal Mine Health and Safety Act of 1969 required that periodic chest radiographs be offered to underground coal miners to protect the miners from the development of Coal Workers' Pneumoconiosis (CWP) and progression of the disease to progressive massive fibrosis (PMF). These examinations are administered by the National Institute for Occupational Safety and Health (NIOSH) through the Coal Workers' Health Surveillance Program (CWHSP). The mine operator is required to provide each miner with the opportunity to have the chest radiograph at no cost to the miner.^ Three rounds of examinations have been conducted since 1969 and the fourth is underway. The decrease in participation over rounds is of great concern if the incidence and progression of CWP are to be understood and controlled.^ This study developed rates of participation for each of 558 West Virginia underground coal mines who submitted or had NIOSH assigned plans for making chest radiographs available during the third round, July 1978 through December 1980. These rates were analyzed in relation to desired levels of participation and to reinforcing, predisposing and enabling factors presumed to affect rates of participation in disease prevention and surveillance programs.^ Two reinforcing factors, size of mine and inclusion of the mine in the National Coal Study (NCS) epidemiology research program, and the enabling factor, use of an on-site radiograph facility, demonstrated highly significant relationships to participation rates.^ The major findings of the study were: (1) Participation in the CWHSP is even lower than previously estimated; (2) CWHSP program evaluation is not systematic and program data base is not complete and comprehensive; and (3) NIOSH program policy is not clear and administration of the CWHSP is fragmented and lacks adequate fiscal and personnel resources. ^