887 resultados para Cluster structure of atomic nuclei
Resumo:
Kirjallisuusarvostelu
Resumo:
We comment on a recent paper by Uma Maheswari et al. in which it is claimed that quantal calculations of the half-infinite nuclear matter, in contrast to semiclassical approximations, exhibit an unusually strong dependence of the 90%10% surface thickness of the density profile on the Fermi momentum kF at saturation. This conclusion was carried over to the surface incompressibility. On the contrary we find essential agreement between semiclassical and quantal results and very weak dependence on kF of the quantities in question.
Resumo:
Electron scattering on unstable nuclei is planned in future facilities of the GSI and RIKEN upgrades. Motivated by this fact, we study theoretical predictions for elastic electron scattering in the N=82, N=50, and N=14 isotonic chains from very proton-deficient to very proton-rich isotones. We compute the scattering observables by performing Dirac partial-wave calculations. The charge density of the nucleus is obtained with a covariant nuclear mean-field model that accounts for the low-energy electromagnetic structure of the nucleon. For the discussion of the dependence of scattering observables at low-momentum transfer on the gross properties of the charge density, we fit Helm model distributions to the self-consistent mean-field densities. We find that the changes shown by the electric charge form factor along each isotonic chain are strongly correlated with the underlying proton shell structure of the isotones. We conclude that elastic electron scattering experiments on isotones can provide valuable information about the filling order and occupation of the single-particle levels of protons.
Resumo:
This conference paper outlines the operation and some of the preliminary physics results using the GSI RISING active stopper. Data are presented from an experiment using combined isomer and beta‐delayed gamma‐ray spectroscopy to study low‐lying spectral and decay properties of heavy‐neutron‐rich nuclei around A∼190 produced following the relativistic projectile fragmentation of 208Pb primary beam. The response of the RISING active stopper detector is demonstrated for both the implantation of heavy secondary fragments and in‐situ decay of beta‐particles. Beta‐delayed gamma‐ray spectroscopy following decays of the neutron‐rich nucleus 194Re is presented to demonstrate the experimental performance of the set‐up. The resulting information inferred from excited states in the W and Os daughter nuclei is compared with results from Skyrme Hartree‐Fock predictions of the evolution of nuclear shape.
Resumo:
A chemical-specific photoelectron diffraction structure determination of a carbon rich buffer layer on SiC is reported. In addition to the long-range ripple of this surface, a local buckling in the hexagonal sublattice, which breaks the local range order symmetry, was unraveled.
Resumo:
The crystalline structure of transition-metals (TM) has been widely known for several decades, however, our knowledge on the atomic structure of TM clusters is still far from satisfactory, which compromises an atomistic understanding of the reactivity of TM clusters. For example, almost all density functional theory (DFT) calculations for TM clusters have been based on local (local density approximation-LDA) and semilocal (generalized gradient approximation-GGA) exchange-correlation functionals, however, it is well known that plain DFT fails to correct the self-interaction error, which affects the properties of several systems. To improve our basic understanding of the atomic and electronic properties of TM clusters, we report a DFT study within two nonlocal functionals, namely, the hybrid HSE (Heyd, Scuseria, and Ernzerhof) and GGA + U functionals, of the structural and electronic properties of the Co(13), Rh(13), and Hf(13) clusters. For Co(13) and Rh(13), we found that improved exchange-correlation functionals decrease the stability of open structures such as the hexagonal bilayer (HBL) and double simple-cubic (DSC) compared with the compact icosahedron (ICO) structure, however, DFT-GGA, DFT-GGA + U, and DFT-HSE yield very similar results for Hf(13). Thus, our results suggest that the DSC structure obtained by several plain DFT calculations for Rh(13) can be improved by the use of improved functionals. Using the sd hybridization analysis, we found that a strong hybridization favors compact structures, and hence, a correct description of the sd hybridization is crucial for the relative energy stability. For example, the sd hybridization decreases for HBL and DSC and increases for ICO in the case of Co(13) and Rh(13), while for Hf(13), the sd hybridization decreases for all configurations, and hence, it does not affect the relative stability among open and compact configurations.
Resumo:
Nanostructured Si thin films, also referred as polymorphous, were grown by plasma-enhanced chemical vapor deposition. The term "polymorphous" is used to define silicon material that consists of a two-phase mixture of amorphous and ordered Si. The plasma conditions were set to obtain Si thin films from the simultaneous deposition of radical and ordered nanoparticles. Here, a careful analysis by electron transmission microscopy and electron diffraction is reported with the aim to clarify the specific atomic structure of the nanocrystalline particles embedded in the films. Whatever the plasma conditions, the electron diffraction images always revealed the existence of a well-defined crystalline structure different from the diamondlike structure of Si. The formation of nanocrystallinelike films at low temperature is discussed. A Si face-cubic-centered structure is demonstrated here in nanocrystalline particles produced in low-pressure silane plasma at room temperature.
Resumo:
The interaction of atomic hydrogen with C4H9, Si4H9, and Ge4H9 model clusters has been studied using all-electron and pseudopotential ab initio Hartree-Fock computations with basis sets of increasing flexibility. The results show that the effect of polarization functions is important in order to reproduce the experimental findings, but their inclusion only for the atoms directly involved in the chemisorption bond is usually sufficient. For the systems H-C4H9 and H-Si4H9 all-electron and pseudopotential results are in excellent agreement when basis sets of comparable quality are used. Besides, semiempirical modified-neglect-of-differential-overlap computations provide quite reliable results both for diamond and silicon and have been used to investigate larger model clusters. The results confirm the local nature of chemisorption and further justify the use of minimal X4H9 model clusters.
Resumo:
Interaction models of atomic Al with Si4H9, Si4H7, and Si6H9 clusters have been studied to simulate Al chemisorption on the Si(111) surface in the atop, fourfold atop, and open sites. Calculations were carried out using nonempirical pseudopotentials in the framework of the ab initio Hartree-Fock procedure. Equilibrium bond distances, binding energies for adsorption, and vibrational frequencies of the adatoms are calculated. Several basis sets were used in order to show the importance of polarization effects, especially in the binding energies. Final results show the importance of considering adatom-induced relaxation effects to specify the order of energy stabilities for the three different sites, the fourfold atop site being the preferred one, in agreement with experimental findings.
Resumo:
A review of relativistic atomic structure calculations is given with a emphasis on the Multiconfigurational-Dirac-Fock method. Its problems and deficiencies are discussed together with the contributions which go beyond the Dirac-Fock procedure.
Resumo:
It is known that germin, which is a marker of the onset of growth in germinating wheat, is an oxalate oxidase, and also that germins possess sequence similarity with legumin and vicilin seed storage proteins. These two pieces of information have been combined in order to generate a 3D model of germin based on the structure of vicilin and to examine the model with regard to a potential oxalate oxidase active site. A cluster of three histidine residues has been located within the conserved beta-barrel structure. While there is a relatively low level of overall sequence similarity between the model and the vicilin structures, the conservation of amino acids important in maintaining the scaffold of the beta-barrel lends confidence to the juxtaposition of the histidine residues. The cluster is similar structurally to those found in copper amine oxidase and other proteins, leading to the suggestion that it defines a metal-binding location within the oxalate oxidase active site. It is also proposed that the structural elements involved in intermolecular interactions in vicilins may play a role in oligomer formation in germin/oxalate oxidase.
Resumo:
Here we report the crystal structure of the DNA heptanucleotide sequence d(GCATGCT) determined to a resolution of 1.1 Angstrom. The sequence folds into a complementary loop structure generating several unusual base pairings and is stabilised through cobalt hexammine and highly defined water sites. The single stranded loop is bound together through the G(N2)-C(O2) intra-strand H-bonds for the available G/C residues, which form further Watson-Crick pairings to a complementary sequence, through 2-fold symmetry, generating a pair of non-planar quadruplexes at the heart of the structure. Further, four adenine residues stack in pairs at one end, H-bonding through their N7-N6 positions, and are additionally stabilised through two highly conserved water positions at the structural terminus. This conformation is achieved through the rotation of the central thymine base at the pinnacle of the loop structure, where it stacks with an adjacent thymine residue within the lattice. The crystal packing yields two halved biological units, each related across a 2-fold symmetry axis spanning a cobalt hexammine residue between them, which stabilises the quadruplex structure through H-bonds to the phosphate oxygens and localised hydration.