822 resultados para Cloud-based Services
Resumo:
Part 5: Service Orientation in Collaborative Networks
Resumo:
We describe a system for performing SLA-driven management and orchestration of distributed infrastructures composed of services supporting mobile computing use cases. In particular, we focus on a Follow-Me Cloud scenario in which we consider mobile users accessing cloud-enable services. We combine a SLA-driven approach to infrastructure optimization, with forecast-based performance degradation preventive actions and pattern detection for supporting mobile cloud infrastructure management. We present our system's information model and architecture including the algorithmic support and the proposed scenarios for system evaluation.
Resumo:
The Mobile Cloud Networking project develops among others, several virtualized services and applications, in particular: (1) IP Multimedia Subsystem as a Service that gives the possibility to deploy a virtualized and on-demand instance of the IP Multimedia Subsystem platform, (2) Digital Signage Service as a Service that is based on a re-designed Digital Signage Service architecture, adopting the cloud computing principles, and (3) Information Centric Networking/Content Delivery Network as a Service that is used for distributing, caching and migrating content from other services. Possible designs for these virtualized services and applications have been identified and are being implemented. In particular, the architectures of the mentioned services were specified, adopting cloud computing principles, such as infrastructure sharing, elasticity, on-demand and pay-as-you-go. The benefits of Reactive Programming paradigm are presented in the context of Interactive Cloudified Digital Signage services in a Mobile Cloud Platform, as well as the benefit of interworking between different Mobile Cloud Networking Services as Digital Signage Service and Content Delivery Network Service for better performance of Video on Demand content deliver. Finally, the management of Service Level Agreements and the support of rating, charging and billing has also been considered and defined.
Resumo:
As computational models in fields such as medicine and engineering get more refined, resource requirements are increased. In a first instance, these needs have been satisfied using parallel computing and HPC clusters. However, such systems are often costly and lack flexibility. HPC users are therefore tempted to move to elastic HPC using cloud services. One difficulty in making this transition is that HPC and cloud systems are different, and performance may vary. The purpose of this study is to evaluate cloud services as a means to minimise both cost and computation time for large-scale simulations, and to identify which system properties have the most significant impact on performance. Our simulation results show that, while the performance of Virtual CPU (VCPU) is satisfactory, network throughput may lead to difficulties.
Resumo:
Guaranteeing Quality of Service (QoS) with minimum computation cost is the most important objective of cloud-based MapReduce computations. Minimizing the total computation cost of cloud-based MapReduce computations is done through MapReduce placement optimization. MapReduce placement optimization approaches can be classified into two categories: homogeneous MapReduce placement optimization and heterogeneous MapReduce placement optimization. It is generally believed that heterogeneous MapReduce placement optimization is more effective than homogeneous MapReduce placement optimization in reducing the total running cost of cloud-based MapReduce computations. This paper proposes a new approach to the heterogeneous MapReduce placement optimization problem. In this new approach, the heterogeneous MapReduce placement optimization problem is transformed into a constrained combinatorial optimization problem and is solved by an innovative constructive algorithm. Experimental results show that the running cost of the cloud-based MapReduce computation platform using this new approach is 24:3%-44:0% lower than that using the most popular homogeneous MapReduce placement approach, and 2:0%-36:2% lower than that using the heterogeneous MapReduce placement approach not considering the spare resources from the existing MapReduce computations. The experimental results have also demonstrated the good scalability of this new approach.
Resumo:
There is an increase in the uptake of cloud computing services (CCS). CCS is adopted in the form of a utility, and it incorporates business risks of the service providers and intermediaries. Thus, the adoption of CCS will change the risk profile of an organization. In this situation, organisations need to develop competencies by reconsidering their IT governance structures to achieve a desired level of IT-business alignment and maintain their risk appetite to source business value from CCS. We use the resource-based theories to suggest that collaborative board oversight of CCS, competencies relating to CCS information and financial management, and a CCS-related continuous audit program can contribute to business process performance improvements and overall firm performance. Using survey data, we find evidence of a positive association between these IT governance considerations and business process performance. We also find evidence of positive association between business process performance improvements and overall firm performance. The results suggest that the suggested considerations on IT governance structures can contribute to CCS-related IT-business alignment and lead to anticipated business value from CCS. This study provides guidance to organizations on competencies required to secure business value from CCS.
Resumo:
There is an increase in the uptake of cloud computing services (CCS). CCS is adopted in the form of a utility, and it incorporates business risks of the service providers and intermediaries. Thus, the adoption of CCS will change the risk profile of an organization. In this situation, organizations need to develop competencies by reconsidering their IT governance structures to achieve a desired level of IT-business alignment and maintain their risk appetite to source business value from CCS. We use the resource-based theories to suggest that collaborative board oversight of CCS, competencies relating to CCS information and financial management, and a CCS-related continuous audit program can contribute to business process performance improvements and overall firm performance. Using survey data, we find evidence of a positive association between these IT governance considerations and business process performance. We also find evidence of positive association between business process performance improvements and overall firm performance. The results suggest that the suggested considerations on IT governance structures can contribute to CCS-related IT-business alignment and lead to anticipated business value from CCS. This study provides guidance to organizations on competencies required to secure business value from CCS.
Resumo:
In this paper we present a combination of technologies to provide an Energy-on-Demand (EoD) service to enable low cost innovation suitable for microgrid networks. The system is designed around the low cost and simple Rural Energy Device (RED) Box which in combination with Short Message Service (SMS) communication methodology serves as an elementary proxy for Smart meters which are typically used in urban settings. Further, customer behavior and familiarity in using such devices based on mobile experience has been incorporated into the design philosophy. Customers are incentivized to interact with the system thus providing valuable behavioral and usage data to the Utility Service Provider (USP). Data that is collected over time can be used by the USP for analytics envisioned by using remote computing services known as cloud computing service. Cloud computing allows for a sharing of computational resources at the virtual level across several networks. The customer-system interaction is facilitated by a third party Telecom Service provider (TSP). The approximate cost of the RED Box is envisaged to be under USD 10 on production scale.
Resumo:
Paper presented at the Cloud Forward Conference 2015, October 6th-8th, Pisa
Resumo:
The broad capabilities of current mobile devices have paved the way for Mobile Crowd Sensing (MCS) applications. The success of this emerging paradigm strongly depends on the quality of received data which, in turn, is contingent to mass user participation; the broader the participation, the more useful these systems become. However, there is an ongoing trend that tries to integrate MCS applications with emerging computing paradigms such as cloud computing. The intuition is that such a transition can significantly improve the overall efficiency while at the same time it offers stronger security and privacy-preserving mechanisms for the end-user. In this position paper, we dwell on the underpinnings of incorporating cloud computing techniques to facilitate the vast amount of data collected in MCS applications. That is, we present a list of core system, security and privacy requirements that must be met if such a transition is to be successful. To this end, we first address several competing challenges not previously considered in the literature such as the scarce energy resources of battery-powered mobile devices as well as their limited computational resources that they often prevent the use of computationally heavy cryptographic operations and thus offering limited security services to the end-user. Finally, we present a use case scenario as a comprehensive example. Based on our findings, we posit open issues and challenges, and discuss possible ways to address them, so that security and privacy do not hinder the migration of MCS systems to the cloud.
Resumo:
Current advanced cloud infrastructure management solutions allow scheduling actions for dynamically changing the number of running virtual machines (VMs). This approach, however, does not guarantee that the scheduled number of VMs will properly handle the actual user generated workload, especially if the user utilization patterns will change. We propose using a dynamically generated scaling model for the VMs containing the services of the distributed applications, which is able to react to the variations in the number of application users. We answer the following question: How to dynamically decide how many services of each type are needed in order to handle a larger workload within the same time constraints? We describe a mechanism for dynamically composing the SLAs for controlling the scaling of distributed services by combining data analysis mechanisms with application benchmarking using multiple VM configurations. Based on processing of multiple application benchmarks generated data sets we discover a set of service monitoring metrics able to predict critical Service Level Agreement (SLA) parameters. By combining this set of predictor metrics with a heuristic for selecting the appropriate scaling-out paths for the services of distributed applications, we show how SLA scaling rules can be inferred and then used for controlling the runtime scale-in and scale-out of distributed services. We validate our architecture and models by performing scaling experiments with a distributed application representative for the enterprise class of information systems. We show how dynamically generated SLAs can be successfully used for controlling the management of distributed services scaling.
Resumo:
Cloud computing provides a promising solution to the genomics data deluge problem resulting from the advent of next-generation sequencing (NGS) technology. Based on the concepts of “resources-on-demand” and “pay-as-you-go”, scientists with no or limited infrastructure can have access to scalable and cost-effective computational resources. However, the large size of NGS data causes a significant data transfer latency from the client’s site to the cloud, which presents a bottleneck for using cloud computing services. In this paper, we provide a streaming-based scheme to overcome this problem, where the NGS data is processed while being transferred to the cloud. Our scheme targets the wide class of NGS data analysis tasks, where the NGS sequences can be processed independently from one another. We also provide the elastream package that supports the use of this scheme with individual analysis programs or with workflow systems. Experiments presented in this paper show that our solution mitigates the effect of data transfer latency and saves both time and cost of computation.
Resumo:
The 4CaaSt project aims at developing a PaaS framework that enables flexible definition, marketing, deployment and management of Cloud-based services and applications. The major innovations proposed by 4CaaSt are the blueprint and its lifecycle management, a one stop shop for Cloud services and a PaaS level resource management featuring elasticity. 4CaaSt also provides a portfolio of ready to use Cloud native services and Cloud-aware immigrant technologies.