758 resultados para Cloud Computing
Resumo:
The term “cloud computing” has emerged as a major ICT trend and has been acknowledged by respected industry survey organizations as a key technology and market development theme for the industry and ICT users in 2010. However, one of the major challenges that faces the cloud computing concept and its global acceptance is how to secure and protect the data and processes that are the property of the user. The security of the cloud computing environment is a new research area requiring further development by both the academic and industrial research communities. Today, there are many diverse and uncoordinated efforts underway to address security issues in cloud computing and, especially, the identity management issues. This paper introduces an architecture for a new approach to necessary “mutual protection” in the cloud computing environment, based upon a concept of mutual trust and the specification of definable profiles in vector matrix form. The architecture aims to achieve better, more generic and flexible authentication, authorization and control, based on a concept of mutuality, within that cloud computing environment.
Resumo:
In cloud computing, resource allocation and scheduling of multiple composite web services is an important and challenging problem. This is especially so in a hybrid cloud where there may be some low-cost resources available from private clouds and some high-cost resources from public clouds. Meeting this challenge involves two classical computational problems: one is assigning resources to each of the tasks in the composite web services; the other is scheduling the allocated resources when each resource may be used by multiple tasks at different points of time. In addition, Quality-of-Service (QoS) issues, such as execution time and running costs, must be considered in the resource allocation and scheduling problem. Here we present a Cooperative Coevolutionary Genetic Algorithm (CCGA) to solve the deadline-constrained resource allocation and scheduling problem for multiple composite web services. Experimental results show that our CCGA is both efficient and scalable.
Resumo:
Software as a Service (SaaS) is gaining more and more attention from software users and providers recently. This has raised many new challenges to SaaS providers in providing better SaaSes that suit everyone needs at minimum costs. One of the emerging approaches in tackling this challenge is by delivering the SaaS as a composite SaaS. Delivering it in such an approach has a number of benefits, including flexible offering of the SaaS functions and decreased cost of subscription for users. However, this approach also introduces new problems for SaaS resource management in a Cloud data centre. We present the problem of composite SaaS resource management in Cloud data centre, specifically on its initial placement and resource optimization problems aiming at improving the SaaS performance based on its execution time as well as minimizing the resource usage. Our approach differs from existing literature because it addresses the problems resulting from composite SaaS characteristics, where we focus on the SaaS requirements, constraints and interdependencies. The problems are tackled using evolutionary algorithms. Experimental results demonstrate the efficiency and the scalability of the proposed algorithms.
Resumo:
Recently, Software as a Service (SaaS) in Cloud computing, has become more and more significant among software users and providers. To offer a SaaS with flexible functions at a low cost, SaaS providers have focused on the decomposition of the SaaS functionalities, or known as composite SaaS. This approach has introduced new challenges in SaaS resource management in data centres. One of the challenges is managing the resources allocated to the composite SaaS. Due to the dynamic environment of a Cloud data centre, resources that have been initially allocated to SaaS components may be overloaded or wasted. As such, reconfiguration for the components’ placement is triggered to maintain the performance of the composite SaaS. However, existing approaches often ignore the communication or dependencies between SaaS components in their implementation. In a composite SaaS, it is important to include these elements, as they will directly affect the performance of the SaaS. This paper will propose a Grouping Genetic Algorithm (GGA) for multiple composite SaaS application component clustering in Cloud computing that will address this gap. To the best of our knowledge, this is the first attempt to handle multiple composite SaaS reconfiguration placement in a dynamic Cloud environment. The experimental results demonstrate the feasibility and the scalability of the GGA.
Resumo:
A composite SaaS (Software as a Service) is a software that is comprised of several software components and data components. The composite SaaS placement problem is to determine where each of the components should be deployed in a cloud computing environment such that the performance of the composite SaaS is optimal. From the computational point of view, the composite SaaS placement problem is a large-scale combinatorial optimization problem. Thus, an Iterative Cooperative Co-evolutionary Genetic Algorithm (ICCGA) was proposed. The ICCGA can find reasonable quality of solutions. However, its computation time is noticeably slow. Aiming at improving the computation time, we propose an unsynchronized Parallel Cooperative Co-evolutionary Genetic Algorithm (PCCGA) in this paper. Experimental results have shown that the PCCGA not only has quicker computation time, but also generates better quality of solutions than the ICCGA.
Resumo:
Cloud computing has emerged as a major ICT trend and has been acknowledged as a key theme of industry by prominent ICT organisations. However, one of the major challenges that face the cloud computing concept and its global acceptance is how to secure and protect the data that is the property of the user. The geographic location of cloud data storage centres is an important issue for many organisations and individuals due to the regulations and laws that require data and operations to reside in specific geographic locations. Thus, data owners may need to ensure that their cloud providers do not compromise the SLA contract and move their data into another geographic location. This paper introduces an architecture for a new approach for geographic location assurance, which combines the proof of storage protocol (POS) and the distance-bounding protocol. This allows the client to check where their stored data is located, without relying on the word of the cloud provider. This architecture aims to achieve better security and more flexible geographic assurance within the environment of cloud computing.
Resumo:
Cloud computing allows for vast computational resources to be leveraged quickly and easily in bursts as and when required. Here we describe a technique that allows for Monte Carlo radiotherapy dose calculations to be performed using GEANT4 and executed in the cloud, with relative simulation cost and completion time evaluated as a function of machine count. As expected, simulation completion time decreases as 1=n for n parallel machines, and relative simulation cost is found to be optimal where n is a factor of the total simulation time in hours. Using the technique, we demonstrate the potential usefulness of cloud computing as a solution for rapid Monte Carlo simulation for radiotherapy dose calculation without the need for dedicated local computer hardware as a proof of principal. Funding source Cancer Australia (Department of Health and Ageing) Research Grant 614217
Resumo:
With the widespread application of healthcare Information and Communication Technology (ICT), constructing a stable and sustainable data sharing circumstance has attracted rapidly growing attention in both academic research area and healthcare industry. Cloud computing is one of long dreamed visions of Healthcare Cloud (HC), which matches the need of healthcare information sharing directly to various health providers over the Internet, regardless of their location and the amount of data. In this paper, we discuss important research tool related to health information sharing and integration in HC and investigate the arising challenges and issues. We describe many potential solutions to provide more opportunities to implement EHR cloud. As well, we introduce the development of a HC related collaborative healthcare research example, thus illustrating the prospective of applying Cloud Computing in the health information science research.
Resumo:
Despite the compelling case for moving towards cloud computing, the upstream oil & gas industry faces several technical challenges—most notably, a pronounced emphasis on data security, a reliance on extremely large data sets, and significant legacy investments in information technology infrastructure—that make a full migration to the public cloud difficult at present. Private and hybrid cloud solutions have consequently emerged within the industry to yield as much benefit from cloud-based technologies as possible while working within these constraints. This paper argues, however, that the move to private and hybrid clouds will very likely prove only to be a temporary stepping stone in the industry's technological evolution. By presenting evidence from other market sectors that have faced similar challenges in their journey to the cloud, we propose that enabling technologies and conditions will probably fall into place in a way that makes the public cloud a far more attractive option for the upstream oil & gas industry in the years ahead. The paper concludes with a discussion about the implications of this projected shift towards the public cloud, and calls for more of the industry's services to be offered through cloud-based “apps.”
Resumo:
The main theme of this thesis is to allow the users of cloud services to outsource their data without the need to trust the cloud provider. The method is based on combining existing proof-of-storage schemes with distance-bounding protocols. Specifically, cloud customers will be able to verify the confidentiality, integrity, availability, fairness (or mutual non-repudiation), data freshness, geographic assurance and replication of their stored data directly, without having to rely on the word of the cloud provider.
Resumo:
Cloud computing is an emerging computing paradigm in which IT resources are provided over the Internet as a service to users. One such service offered through the Cloud is Software as a Service or SaaS. SaaS can be delivered in a composite form, consisting of a set of application and data components that work together to deliver higher-level functional software. SaaS is receiving substantial attention today from both software providers and users. It is also predicted to has positive future markets by analyst firms. This raises new challenges for SaaS providers managing SaaS, especially in large-scale data centres like Cloud. One of the challenges is providing management of Cloud resources for SaaS which guarantees maintaining SaaS performance while optimising resources use. Extensive research on the resource optimisation of Cloud service has not yet addressed the challenges of managing resources for composite SaaS. This research addresses this gap by focusing on three new problems of composite SaaS: placement, clustering and scalability. The overall aim is to develop efficient and scalable mechanisms that facilitate the delivery of high performance composite SaaS for users while optimising the resources used. All three problems are characterised as highly constrained, large-scaled and complex combinatorial optimisation problems. Therefore, evolutionary algorithms are adopted as the main technique in solving these problems. The first research problem refers to how a composite SaaS is placed onto Cloud servers to optimise its performance while satisfying the SaaS resource and response time constraints. Existing research on this problem often ignores the dependencies between components and considers placement of a homogenous type of component only. A precise problem formulation of composite SaaS placement problem is presented. A classical genetic algorithm and two versions of cooperative co-evolutionary algorithms are designed to now manage the placement of heterogeneous types of SaaS components together with their dependencies, requirements and constraints. Experimental results demonstrate the efficiency and scalability of these new algorithms. In the second problem, SaaS components are assumed to be already running on Cloud virtual machines (VMs). However, due to the environment of a Cloud, the current placement may need to be modified. Existing techniques focused mostly at the infrastructure level instead of the application level. This research addressed the problem at the application level by clustering suitable components to VMs to optimise the resource used and to maintain the SaaS performance. Two versions of grouping genetic algorithms (GGAs) are designed to cater for the structural group of a composite SaaS. The first GGA used a repair-based method while the second used a penalty-based method to handle the problem constraints. The experimental results confirmed that the GGAs always produced a better reconfiguration placement plan compared with a common heuristic for clustering problems. The third research problem deals with the replication or deletion of SaaS instances in coping with the SaaS workload. To determine a scaling plan that can minimise the resource used and maintain the SaaS performance is a critical task. Additionally, the problem consists of constraints and interdependency between components, making solutions even more difficult to find. A hybrid genetic algorithm (HGA) was developed to solve this problem by exploring the problem search space through its genetic operators and fitness function to determine the SaaS scaling plan. The HGA also uses the problem's domain knowledge to ensure that the solutions meet the problem's constraints and achieve its objectives. The experimental results demonstrated that the HGA constantly outperform a heuristic algorithm by achieving a low-cost scaling and placement plan. This research has identified three significant new problems for composite SaaS in Cloud. Various types of evolutionary algorithms have also been developed in addressing the problems where these contribute to the evolutionary computation field. The algorithms provide solutions for efficient resource management of composite SaaS in Cloud that resulted to a low total cost of ownership for users while guaranteeing the SaaS performance.
Resumo:
The purpose of this paper is to provide an evolutionary perspective of cloud computing (CC) by integrating two previously disparate literatures: CC and information technology outsourcing (ITO). We review the literature and develop a framework that highlights the demand for the CC service, benefits, risks, as well as risk mitigation strategies that are likely to influence the success of the service. CC success in organisations and as a technology overall is a function of (i) the outsourcing decision and supplier selection, (ii) contractual and relational governance, and (iii) industry standards and legal framework. Whereas CC clients have little control over standards and/or the legal framework, they are able to influence other factors to maximize the benefits while limiting the risks. This paper provides guidelines for (potential) cloud computing users with respect to the outsourcing decision, vendor selection, service-level-agreements, and other issues that need to be addressed when opting for CC services. We contribute to the literature by providing an evolutionary and holistic view of CC that draws on the extensive literature and theory of ITO. We conclude the paper with a number of research paths that future researchers can follow to advance the knowledge in this field.
Resumo:
The topic of “the cloud” has attracted significant attention throughout the past few years (Cherry 2009; Sterling and Stark 2009) and, as a result, academics and trade journals have created several competing definitions of “cloud computing” (e.g., Motahari-Nezhad et al. 2009). Underpinning this article is the definition put forward by the US National Institute of Standards and Technology, which describes cloud computing as “a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources that can be rapidly provisioned and released with minimal management effort or service provider interaction” (Garfinkel 2011, p. 3). Despite the lack of consensus about definitions, however, there is broad agreement on the growing demand for cloud computing. Some estimates suggest that spending on cloudrelated technologies and services in the next few years may climb as high as USD 42 billion/year (Buyya et al. 2009).
Resumo:
The purpose of this paper is to empirically examine the state of cloud computing adoption in Australia. I specifically focus on the drivers, risks, and benefits of cloud computing from the perspective of IT experts and forensic accountants. I use thematic analysis of interview data to answer the research questions of the study. The findings suggest that cloud computing is increasingly gaining foothold in many sectors due to its advantages such as flexibility and the speed of deployment. However, security remains an issue and therefore its adoption is likely to be selective and phased. Of particular concern are the involvement of third parties and foreign jurisdictions, which in the event of damage may complicate litigation and forensic investigations. This is one of the first empirical studies that reports on cloud computing adoption and experiences in Australia.
Resumo:
Enterprises, both public and private, have rapidly commenced using the benefits of enterprise resource planning (ERP) combined with business analytics and “open data sets” which are often outside the control of the enterprise to gain further efficiencies, build new service operations and increase business activity. In many cases, these business activities are based around relevant software systems hosted in a “cloud computing” environment. “Garbage in, garbage out”, or “GIGO”, is a term long used to describe problems in unqualified dependency on information systems, dating from the 1960s. However, a more pertinent variation arose sometime later, namely “garbage in, gospel out” signifying that with large scale information systems, such as ERP and usage of open datasets in a cloud environment, the ability to verify the authenticity of those data sets used may be almost impossible, resulting in dependence upon questionable results. Illicit data set “impersonation” becomes a reality. At the same time the ability to audit such results may be an important requirement, particularly in the public sector. This paper discusses the need for enhancement of identity, reliability, authenticity and audit services, including naming and addressing services, in this emerging environment and analyses some current technologies that are offered and which may be appropriate. However, severe limitations to addressing these requirements have been identified and the paper proposes further research work in the area.