994 resultados para Clock Model
Resumo:
The development of a permanent, stable ice sheet in East Antarctica happened during the middle Miocene, about 14 million years (Myr) ago. The middle Miocene therefore represents one of the distinct phases of rapid change in the transition from the "greenhouse" of the early Eocene to the "icehouse" of the present day. Carbonate carbon isotope records of the period immediately following the main stage of ice sheet development reveal a major perturbation in the carbon system, represented by the positive d13C excursion known as carbon maximum 6 ("M6"), which has traditionally been interpreted as reflecting increased burial of organic matter and atmospheric pCO2 drawdown. More recently, it has been suggested that the d13C excursion records a negative feedback resulting from the reduction of silicate weathering and an increase in atmospheric pCO2. Here we present high-resolution multi-proxy (alkenone carbon and foraminiferal boron isotope) records of atmospheric carbon dioxide and sea surface temperature across CM6. Similar to previously published records spanning this interval, our records document a world of generally low (~300 ppm) atmospheric pCO2 at a time generally accepted to be much warmer than today. Crucially, they also reveal a pCO2 decrease with associated cooling, which demonstrates that the carbon burial hypothesis for CM6 is feasible and could have acted as a positive feedback on global cooling.
Resumo:
We examined phylogenetic relationships among six species representing three subfamilies, Glirinae, Graphiurinae and Leithiinae with sequences from three nuclear protein-coding genes (apolipoprotein B, APOB; interphotoreceptor retinoid-binding protein, IRBP; recombination-activating gene 1, RAG1). Phylogenetic trees reconstructed from maximum-parsimony (MP), maximum-likelihood (ML) and Bayesian-inference (BI) analyses showed the monophyly of Glirinae (Glis and Glirulus) and Leithiinae (Dryomys, Eliomys and Muscardinus) with strong support, although the branch length maintaining this relationship was very short, implying rapid diversification among the three subfamilies. Divergence time estimates were calculated from ML (local clock model) and Bayesian-dating method using a calibration point of 25 Myr (million years) ago for the divergence between Glis and Glirulus, and 55 Myr ago for the split between lineages of Gliridae and Sciuridae on the basis of fossil records. The results showed that each lineage of Graphiuros, Glis, Glirulus and Muscardinus dates from the Late Oligocene to the Early Miocene period, which is mostly in agreement with fossil records. Taking into account that warm climate harbouring a glirid-favoured forest dominated from Europe to Asia during this period, it is considered that this warm environment triggered the prosperity of the glirid species through the rapid diversification. Glirulus japonicas is suggested to be a relict of this ancient diversification during the warm period.
Resumo:
To various degrees, insects in nature adapt to and live with two fundamental environmental rhythms around them: (1) the daily rhythm of light and dark, and (2) the yearly seasonal rhythm of the changing photoperiod (length of light per day). It is hypothesized that two biological clocks evolved in organisms on earth which allow them to harmonize successfully with the two environmental rhythms: (1) the circadian clock, which orchestrates circadian rhythms in physiology and behavior, and (2) the photoperiodic clock, which allows for physiological adaptations to changes in photoperiod during the course of the year (insect photoperiodism). The circadian rhythm is endogenous and continues in constant conditions, while photoperiodism requires specific light inputs of a minimal duration. Output pathways from both clocks control neurosecretory cells which regulate growth and reproduction. This dissertation focuses on the question whether different photoperiods change the network and physiology of the circadian clock of an originally equatorial cockroach species. It is assumed that photoperiod-dependent plasticity of the cockroach circadian clock allows for adaptations in physiology and behavior without the need for a separate photoperiodic clock circuit. The Madeira cockroach Rhyparobia maderae is a well established circadian clock model system. Lesion and transplantation studies identified the accessory medulla (aMe), a small neuropil with about 250 neurons, as the cockroach circadian pacemaker. Among them, the pigment-dispersing factor immunoreactive (PDF-ir) neurons anterior to the aMe (aPDFMes) play a key role as inputs to and outputs of the circadian clock system. The aim of my doctoral thesis was to examine whether and how different photoperiods modify the circadian clock system. With immunocytochemical studies, three-dimensional (3D) reconstruction, standardization and Ca2+-imaging technique, my studies revealed that raising cockroaches in different photoperiods changed the neuronal network of the circadian clock (Wei and Stengl, 2011). In addition, different photoperiods affected the physiology of single, isolated circadian pacemaker neurons. This thesis provides new evidence for the involvement of the circadian clock in insect photoperiodism. The data suggest that the circadian pacemaker system of the Madeira cockroach has the plasticity and potential to allow for physiological adaptations to different photoperiods. Therefore, it may express also properties of a photoperiodic clock.
Resumo:
More than 500 endemic haplochromine cichlid species inhabit Lake Victoria. This striking species diversity is a classical example of recent explosive adaptive radiation thought to have happened within the last similar to 15,000 years. In this study, we examined the population structure and historical demography of 3 pelagic haplochromine cichlid species that resemble in morphology and have similar niche, Haplochromis (Yssichromis) laparogramma, Haplochromis (Y.) pyrrhocephalus, and Haplochromis (Y.) sp. "glaucocephalus". We investigated the sequences of the mitochondrial DNA control region and the insertion patterns of short interspersed elements (SINEs) of 759 individuals. We show that sympatric forms are genetically differentiated in 4 of 6 cases, but we also found apparent weakening of the genetic differentiation in areas with turbid water. We estimated the timings of population expansion and species divergence to coincide with the refilling of the lake at the Pleistocene/Holocene boundary. We also found that estimates can be altered significantly by the choice of the shape of the molecular clock. If we employ the nonlinear clock model of evolutionary rates in which the rates are higher towards the recent, the population expansion was dated at around the event of desiccation of the lake ca. 17,000 YBP. Thus, we succeeded in clarifying the species and population structure of closely related Lake Victoria cichlids and in showing the importance of applying appropriate clock calibrations in elucidating recent evolutionary events. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Lepidotrichia are dermal elements located at the distal margin of osteichthyan fins. In sarcopterygians and actinopterygians, the term has been used to denote the most distal bony hemisegments and also the more proximal, scale-covered segments which overlie endochondral bones of the fin. In certain sarcopterygian fishes, including the Rhizodontida, these more proximal, basal segments are very long, extending at least half the length of the fin. The basal segments have a subcircular cross section, rather than the crescentic cross section of the distal lepidotrichial hemisegments, which lack a scale cover and comprise short, generally regular, elements. In rhizodonts and other sarcopterygians, e.g. Eusthenopteron, the basal elements are the first to appear during fin development, followed by the endochondral bones and then the distal lepidotrichia. This sequence contradicts the 'clock-face model' of fin development proposed by Thorogood in which the formation of endochondral bones is followed by development of lepidotrichia. However, if elongate basal 'lepidotrichia' are not homologous with more distal, jointed lepidotrichia and if the latter form within a distal fin-fold and the former outside this fold, then Thorogood's 'clock-face' model remains valid. This interpretation might indicate that the fin-fold has been lost in early digited stem-tetrapods such as Acanthostega and Ichthyostega and elongate basal elements, but not true lepidotrichia, occur in the caudal fins of these taxa.
Resumo:
The time perception is critical for environmental adaptation in humans and other species. The temporal processing, has evolved through different neural systems, each responsible for processing different time scales. Among the most studied scales is that spans the arrangement of seconds to minutes. Evidence suggests that the dorsolateral prefrontal (DLPFC) cortex has relationship with the time perception scale of seconds. However, it is unclear whether the deficit of time perception in patients with brain injuries or even "reversible lesions" caused by transcranial magnetic stimulation (TMS) in this region, whether by disruption of other cognitive processes (such as attention and working memory) or the time perception itself. Studies also link the region of DLPFC in emotional regulation and specifically the judgment and emotional anticipation. Given this, our objective was to study the role of the dorsolateral prefrontal cortex in the time perception intervals of active and emotionally neutral stimuli, from the effects of cortical modulation by transcranial direct current stimulation (tDCS), through the cortical excitation (anodic current), inhibition (cathode current) and control (sham) using the ranges of 4 and 8 seconds. Our results showed that there is an underestimation when the picture was presented by 8 seconds, with the anodic current in the right DLPFC, there is an underestimation and with cathodic current in the left DLPFC, there is an overestimation of the time reproduction with neutral ones. The cathodic current over the left DLPFC leads to an inverse effect of neutral ones, an underestimation of time with negative pictures. Positive or negative pictures improved estimates for 8 second and positive pictures inhibited the effect of tDCS in DLPFC in estimating time to 4 seconds. With this work, we conclude that the DLPFC plays a key role in the o time perception and largely corresponds to the stages of memory and decision on the internal clock model. The left hemisphere participates in the perception of time in both active and emotionally neutral contexts, and we can conclude that the ETCC and an effective method to study the cortical functions in the time perception in terms of cause and effect.
Resumo:
Over the last three decades, computer architects have been able to achieve an increase in performance for single processors by, e.g., increasing clock speed, introducing cache memories and using instruction level parallelism. However, because of power consumption and heat dissipation constraints, this trend is going to cease. In recent times, hardware engineers have instead moved to new chip architectures with multiple processor cores on a single chip. With multi-core processors, applications can complete more total work than with one core alone. To take advantage of multi-core processors, parallel programming models are proposed as promising solutions for more effectively using multi-core processors. This paper discusses some of the existent models and frameworks for parallel programming, leading to outline a draft parallel programming model for Ada.
Resumo:
Activity rhythms in animal groups arise both from external changes in the environment, as well as from internal group dynamics. These cycles are reminiscent of physical and chemical systems with quasiperiodic and even chaotic behavior resulting from “autocatalytic” mechanisms. We use nonlinear differential equations to model how the coupling between the self-excitatory interactions of individuals and external forcing can produce four different types of activity rhythms: quasiperiodic, chaotic, phase locked, and displaying over or under shooting. At the transition between quasiperiodic and chaotic regimes, activity cycles are asymmetrical, with rapid activity increases and slower decreases and a phase shift between external forcing and activity. We find similar activity patterns in ant colonies in response to varying temperature during the day. Thus foraging ants operate in a region of quasiperiodicity close to a cascade of transitions leading to chaos. The model suggests that a wide range of temporal structures and irregularities seen in the activity of animal and human groups might be accounted for by the coupling between collectively generated internal clocks and external forcings.
Resumo:
Life on earth is subject to the repeated change between day and night periods. All organisms that undergo these alterations have to anticipate consequently the adaptation of their physiology and possess an endogenous periodicity of about 24 hours called circadian rhythm from the Latin circa (about) and diem (day). At the molecular level, virtually all cells of an organism possess a molecular clock which drives rhythmic gene expression and output functions. Besides altered rhythmicity in constant conditions, impaired clock function causes pathophysiological conditions such as diabetes or hypertension. These data unveil a part of the mechanisms underlying the well-described epidemiology of shift work and highlight the function of clock-driven regulatory mechanisms. The post-translational modification of proteins by the ubiquitin polypeptide is a central mechanism to regulate their stability and activity and is capital for clock function. Similarly to the majority of biological processes, it is reversible. Deubiquitylation is carried out by a wide variety of about ninety deubiquitylating enzymes and their function remains poorly understood, especially in vivo. This class of proteolytic enzymes is parted into five families including the Ubiquitin-Specific Proteases (USP), which is the most important with about sixty members. Among them, the Ubiquitin-Specific Protease 2 (Usp2) gene encodes two protein isoforms, USP2-45 and USP2-69. The first is ubiquitously expressed under the control of the circadian clock and displays all features of core clock genes or its closest outputs effectors. Additionally, Usp2-45 was also found to be induced by the mineralocorticoid hormone aldosterone and thought to participate in Na+ reabsorption and blood pressure regulation by Epithelial Na+ Channel ENaC in the kidneys. During my thesis, I aimed to characterize the role of Usp2 in vivo with respect to these two areas, by taking advantage of a total constitutive knockout mouse model. In the first project I aimed to validate the role of USP2-45 in Na+ homeostasis and blood pressure regulation by the kidneys. I found no significant alterations of diurnal Na+ homeostasis and blood pressure in these mice, indicating that Usp2 does not play a substantial role in this process. In urine analyses, we found that our Usp2-KO mice are actually hypercalciuric. In a second project, I aimed to understand the causes of this phenotype. I found that the observed hypercalciuria results essentially from intestinal hyperabsorption. These data reveal a new role for Usp2 as an output effector of the circadian clock in dietary Ca2+ metabolism in the intestine.
Resumo:
Plant circadian clock controls a wide variety of physiological and developmental events, which include the short-days (SDs)-specific promotion of the elongation of hypocotyls during de-etiolation and also the elongation of petioles during vegetative growth. In A. thaliana, the PIF4 gene encoding a phytochrome-interacting basic helix-loop-helix (bHLH) transcription factor plays crucial roles in this photoperiodic control of plant growth. According to the proposed external coincidence model, the PIF4 gene is transcribed precociously at the end of night specifically in SDs, under which conditions the protein product is stably accumulated, while PIF4 is expressed exclusively during the daytime in long days (LDs), under which conditions the protein product is degraded by the light-activated phyB and also the residual proteins are inactivated by the DELLA family of proteins. A number of previous reports provided solid evidence to support this coincidence model mainly at the transcriptional level of the PIF 4 and PIF4-traget genes. Nevertheless, the diurnal oscillation profiles of PIF4 proteins, which were postulated to be dependent on photoperiod and ambient temperature, have not yet been demonstrated. Here we present such crucial evidence on PIF4 protein level to further support the external coincidence model underlying the temperature-adaptive photoperiodic control of plant growth in A. thaliana.
Resumo:
Circadian timing is structured in such a way as to receive information from the external and internal environments, and its function is the timing organization of the physiological and behavioral processes in a circadian pattern. In mammals, the circadian timing system consists of a group of structures, which includes the suprachiasmatic nucleus (SCN), the intergeniculate leaflet and the pineal gland. Neuron groups working as a biological pacemaker are found in the SCN, forming a biological master clock. We present here a simple model for the circadian timing system of mammals, which is able to reproduce two fundamental characteristics of biological rhythms: the endogenous generation of pulses and synchronization with the light-dark cycle. In this model, the biological pacemaker of the SCN was modeled as a set of 1000 homogeneously distributed coupled oscillators with long-range coupling forming a spherical lattice. The characteristics of the oscillator set were defined taking into account the Kuramoto's oscillator dynamics, but we used a new method for estimating the equilibrium order parameter. Simultaneous activities of the excitatory and inhibitory synapses on the elements of the circadian timing circuit at each instant were modeled by specific equations for synaptic events. All simulation programs were written in Fortran 77, compiled and run on PC DOS computers. Our model exhibited responses in agreement with physiological patterns. The values of output frequency of the oscillator system (maximal value of 3.9 Hz) were of the order of magnitude of the firing frequencies recorded in suprachiasmatic neurons of rodents in vivo and in vitro (from 1.8 to 5.4 Hz).
Resumo:
In mouse and chick embryos, cyclic expression of lunatic fringe has an important role in the regulation of mesoderm segmentation. We have isolated a Fringe gene from the protochordate amphioxus. Amphioxus is the closest living relative of the vertebrates, and has mesoderm that is definitively segmented in a manner that is similar to, and probably homologous with, that of vertebrates. AmphiFringe is placed basal to vertebrate Fringe genes in molecular phylogenetic analyses, indicating that the duplications that formed radical-, manic- and lunatic fringe are specific to the vertebrate lineage. AmphiFringe expression was detected in the anterior neural plate of early neurulae, where it resolved into a series of segmental patches by the mid-neurulae stage. No AmphiFringe transcripts were detected in the mesoderm. Based on these observations, we propose a model depicting a successive recruitment of Fringe in the maintenance then regulation of segmentation during vertebrate evolution.
Resumo:
We apply a numerical model of time-dependent ionospheric convection to two directly driven reconnection pulses during a 15-min interval of southward IMF on 26 November 2000. The model requires an input magnetopause reconnection rate variation, which is here derived from the observed variation in the upstream IMF clock angle, q. The reconnection rate is mapped to an ionospheric merging gap, the MLT extent of which is inferred from the Doppler-shifted Lyman-a emission on newly opened field lines, as observed by the FUV instrument on the IMAGE spacecraft. The model is used to reproduce a variety of features observed during this event: SuperDARN observations of the ionospheric convection pattern and transpolar voltage; FUV observations of the growth of patches of newly opened flux; FUVand in situ observations of the location of the Open-Closed field line Boundary (OCB) and a cusp ion step. We adopt a clock angle dependence of the magnetopause reconnection electric field, mapped to the ionosphere, of the form Enosin4(q/2) and estimate the peak value, Eno, by matching observed and modeled variations of both the latitude, LOCB, of the dayside OCB (as inferred from the equatorward edge of cusp proton emissions seen by FUV) and the transpolar voltage FPC (as derived using the mapped potential technique from SuperDARN HF radar data). This analysis also yields the time constant tOCB with which the open-closed boundary relaxes back toward its equilibrium configuration. For the case studied here, we find tOCB = 9.7 ± 1.3 min, consistent with previous inferences from the observed response of ionospheric flow to southward turnings of the IMF. The analysis confirms quantitatively the concepts of ionospheric flow excitation on which the model is based and explains some otherwise anomalous features of the cusp precipitation morphology.
Resumo:
We employ a numerical model of cusp ion precipitation and proton aurora emission to fit variations of the peak Doppler-shifted Lyman-a intensity observed on 26 November 2000 by the SI-12 channel of the FUV instrument on the IMAGE satellite. The major features of this event appeared in response to two brief swings of the interplanetary magnetic field (IMF) toward a southward orientation. We reproduce the observed spatial distributions of this emission on newly opened field lines by combining the proton emission model with a model of the response of ionospheric convection. The simulations are based on the observed variations of the solar wind proton temperature and concentration and the interplanetary magnetic field clock angle. They also allow for the efficiency, sampling rate, integration time and spatial resolution of the FUV instrument. The good match (correlation coefficient 0.91, significant at the 98% level) between observed and modeled variations confirms the time constant (about 4 min) for the rise and decay of the proton emissions predicted by the model for southward IMF conditions. The implications for the detection of pulsed magnetopause reconnection using proton aurora are discussed for a range of interplanetary conditions.