959 resultados para Climatic zoning
Resumo:
The Ibero-American Network of Viticulture, a component of the program of agricultural technology of the CYTED (Ibero-American Program of Science and Technology for Development), is developing the project ?Zoning Methodology and Application in Viticultural Regions of Ibero-America?. An objective of the project is the climatic characterization of this large viticultural region with the participation of ten countries: Argentine, Bolivia, Brazil, Chile, Cuba, Spain, Mexico, Peru, Portugal, and Uruguay.
Resumo:
2005
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia (Proteção de Plantas) - FCA
Resumo:
Planning is an essential instrument for the agricultural occupation of the lands, because it supports the activities of food production and raw materials. It must be driven by techniques that provide the sustainability of these activities, so that also ensures the environmental balance of agroecosystems. Lands misuse can be considered as one of the causes of frustration of agricultural activities. Thus, the occurrence of discrepancies between the effective use (real use) of the land and its agricultural aptitude can compete, in many cases, to the decrease of productivity, as well as for soil degradation. In this way, this research intends to study the relationship between the temporary cultivations, halfperennial cultures, perennial and its developmental environment, determining the edaphoclimatic characteristics of landscapes. From then on, a letter shall be subject to the use and occupation of the soil for agriculture in the municipality of Cristais Paulista-SP, aiming to describe the spatial organization of land use and vegetation cover, and emphasizing management and conservative practices. For that, climatic factors were characterized, fundamentally humidity, temperature and luminosity; edaphics, including parental material, chemical and physical properties, fertility, soil temperature and climatic zoning; biotic, referring to the suitability of different cultures or to be implanted; physical, such as geomorphology, slope, geology, hypsometry and hydrology; socioeconomic, in particular production and marketing seasons; and the way they all, together, affect the adaptation, distribution and production of crops. Using this information, the zoning of the area of study was done based on the 21 nominated groups obtained, in addition to recommendations and suggestions for handling each type of cultivation... (Complete abstract click electronic access below)
Resumo:
Pós-graduação em Geografia - FCT
Resumo:
Temperature and precipitation are major forcing factors influencing grapevine phenology and yield, as well as wine quality. Bioclimatic indices describing the suitability of a particular region for wine production are a commonly used tool for viticultural zoning. For this research these indices were computed for Europe by using the E-OBS gridded daily temperature and precipitation data set for the period from 1950 to 2009. Results showed strong regional contrasts based on the different index patterns and reproduced the wide diversity of local conditions that largely explain the quality and diversity of grapevines being grown across Europe. Owing to the strong inter-annual variability in the indices, a trend analysis and a principal component analysis were applied together with an assessment of their mean patterns. Significant trends were identified in the Winkler and Huglin indices, particularly for southwestern Europe. Four statistically significant orthogonal modes of variability were isolated for the Huglin index (HI), jointly representing 82% of the total variance in Europe. The leading mode was largely dominant (48% of variance) and mainly reflected the observed historical long-term changes. The other 3 modes corresponded to regional dipoles within Europe. Despite the relevance of local and regional climatic characteristics to grapevines, it was demonstrated via canonical correlation analysis that the observed inter-annual variability of the HI was strongly controlled by the large-scale atmospheric circulation during the growing season (April to September).
Resumo:
Climate is one of the main factors controlling winegrape production. Bioclimatic indices describing the suitability of a particular region for wine production are a widely used zoning tool. Seven suitable bioclimatic indices characterize regions in Europe with different viticultural suitability, and their possible geographical shifts under future climate conditions are addressed using regional climate model simulations. The indices are calculated from climatic variables (daily values of temperature and precipitation) obtained from transient ensemble simulations with the regional model COSMO-CLM. Index maps for recent decades (1960–2000) and for the 21st century (following the IPCC-SRES B1 and A1B scenarios) are compared. Results show that climate change is projected to have a significant effect on European viticultural geography. Detrimental impacts on winegrowing are predicted in southern Europe, mainly due to increased dryness and cumulative thermal effects during the growing season. These changes represent an important constraint to grapevine growth and development, making adaptation strategies crucial, such as changing varieties or introducing water supply by irrigation. Conversely, in western and central Europe, projected future changes will benefit not only wine quality, but might also demarcate new potential areas for viticulture, despite some likely threats associated with diseases. Regardless of the inherent uncertainties, this approach provides valuable information for implementing proper and diverse adaptation measures in different European regions.
Resumo:
The wine production is an important activity in many Ibero-American countries. The wine producer regions of these countries configure a large use of different climate types and viticultural climates. In a vitivinicultural zoning project of CYTED (Ibero-American Program for Science, Technology and Development), a viticultural climatic characterization was done in this macro viticultural region. The project have assembled a climatic database that characterizes the viticultural regions, including relevant variables for viticulture: air temperature (mean, maximum, and minimum), precipitation, relative humidity, solar radiation, number of sunshine hours, wind speed, and evapotranspiration. Using indices of the Geoviticulture MCC System (HI, CI and DI), more than 70 viticultural regions in different countries (Argentina, Bolivia, Brazil, Chile, Cuba, Spain, Mexico, Peru, Portugal and Uruguay) were characterized according to its viticultural climatic. The results, which will be integrated to the worldwide database of the MCC System, showed that the Ibero-American viticulture is placed in a wide range of climatic groups of the wine producing regions around the world. This article presents the climatic groups found in Ibero-America, identifying also some new climatic groups not yet found in other regions of the world. This work also identifies some climatic groups not found in Ibero-America viticulture. The research has also highlighted viticultural areas characterized by climates with ?intra-annual climatic variability?, with the potential to produce more than one growing cycle per year. The results allow to conclude that the wide variability and climatic diversity present in Ibero-America may be one of the reasons to explain the diversity in terms of wine types, sensorial characteristics, typicity and uniqueness of wines produced on this macro-region.
Resumo:
This research assesses the potential impact of weekly weather variability on the incidence of cryptosporidiosis disease using time series zero-inflated Poisson (ZIP) and classification and regression tree (CART) models. Data on weather variables, notified cryptosporidiosis cases and population size in Brisbane were supplied by the Australian Bureau of Meteorology, Queensland Department of Health, and Australian Bureau of Statistics, respectively. Both time series ZIP and CART models show a clear association between weather variables (maximum temperature, relative humidity, rainfall and wind speed) and cryptosporidiosis disease. The time series CART models indicated that, when weekly maximum temperature exceeded 31°C and relative humidity was less than 63%, the relative risk of cryptosporidiosis rose by 13.64 (expected morbidity: 39.4; 95% confidence interval: 30.9–47.9). These findings may have applications as a decision support tool in planning disease control and risk management programs for cryptosporidiosis disease.
Resumo:
The Sascha-Pelligrini low-sulphidation epithermal system is located on the western edge of the Deseado Massif, Santa Cruz Province, Argentina. Outcrop sampling has returned values of up to 160g/t gold and 796g/t silver, with Mirasol Resources and Coeur D.Alene Mines currently exploring the property. Detailed mapping of the volcanic stratigraphy has defined three units that comprise the middle Jurassic Chon Aike Formation and two units that comprise the upper Jurassic La Matilde Formation. The Chon Aike Formation consists of rhyodacite ignimbrites and tuffs, with the La Matilde Formation including rhyolite ash and lithic tuffs. The volcanic sequence is intruded by a large flow-banded rhyolite dome, with small, spatially restricted granodiorite dykes and sills cropping out across the study area. ASTER multispectral mineral mapping, combined with PIMA (Portable Infrared Mineral Analyser) and XRD (X-ray diffraction) analysis defines an alteration pattern that zones from laumontite-montmorillonite, to illite-pyritechlorite, followed by a quartz-illite-smectite-pyrite-adularia vein selvage. Supergene kaolinite and steam-heated acid-sulphate kaolinite-alunite-opal alteration horizons crop out along the Sascha Vein trend and Pelligrini respectively. Paragenetically, epithermal veining varies from chalcedonic to saccharoidal with minor bladed textures, colloform/crustiform-banded with visible electrum and acanthite, crustiform-banded grey chalcedonic to jasperoidal with fine pyrite, and crystalline comb quartz. Geothermometry of mineralised veins constrains formation temperatures from 174.8 to 205.1¡ÆC and correlates with the stability field for the interstratified illite-smectite vein selvage. Vein morphology, mineralogy and associated alteration are controlled by host rock rheology, permeability, and depth of the palaeo-water table. Mineralisation within ginguro banded veins resulted from fluctuating fluid pH associated with selenide-rich magmatic pulses, pressure release boiling and wall-rock silicate buffering. The study of the Sascha-Pelligrini epithermal system will form the basis for a deposit-specific model helping to clarify the current understanding of epithermal deposits, and may serve as a template for exploration of similar epithermal deposits throughout Santa Cruz.
Resumo:
The aim of the study is to establish optimum building aspect ratios and south window sizes of residential buildings from thermal performance point of view. The effects of 6 different building aspect ratios and eight different south window sizes for each building aspect ratio are analyzed for apartments located at intermediate floors of buildings, by the aid of the computer based thermal analysis program SUNCODE-PC in five cities of Turkey: Erzurum, Ankara, Diyarbakir, Izmir, and Antalya. The results are evaluated in terms of annual energy consumption and the optimum values are driven. Comparison of optimum values and the total energy consumption rates is made among the analyzed cities.
Resumo:
China has experienced an extraordinary level of economic development since the 1990s, following excessive competition between different regions. This has resulted in many resource and environmental problems. Land resources, for example, are either abused or wasted in many regions. The strategy of development priority zoning (DPZ), proposed by the Chinese National 11th Five-Year Plan, provides an opportunity to solve these problems by coordinating regional development and protection. In line with the rational utilization of land, it is proposed that the DPZ strategy should be integrated with regional land use policy. As there has been little research to date on this issue, this paper introduces a system dynamic (SD) model for assessing land use change in China led by the DPZ strategy. Land use is characterized by the prioritization of land development, land utilization, land harness and land protection (D-U-H-P). By using the Delphi method, a corresponding suitable prioritization of D-U-H-P for the four types of DPZ, including optimized development zones (ODZ), key development zones (KDZ), restricted development zones (RDZ), and forbidden development zones (FDZ) are identified. Suichang County is used as a case study in which to conduct the simulation of land use change under the RDZ strategy. The findings enable a conceptualization to be made of DPZ-led land use change and the identification of further implications for land use planning generally. The SD model also provides a potential tool for local government to combine DPZ strategy at the national level with land use planning at the local level.
Resumo:
The native Australian fly Drosophila serrata belongs to the highly speciose montium subgroup of the melanogaster species group. It has recently emerged as an excellent model system with which to address a number of important questions, including the evolution of traits under sexual selection and traits involved in climatic adaptation along latitudinal gradients. Understanding the molecular genetic basis of such traits has been limited by a lack of genomic resources for this species. Here, we present the first expressed sequence tag (EST) collection for D. serrata that will enable the identification of genes underlying sexually-selected phenotypes and physiological responses to environmental change and may help resolve controversial phylogenetic relationships within the montium subgroup.