996 resultados para Climatic relationship


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In order to reconstruct the monsoonal variability during the late Holocene we investigated a complete, annually laminated sediment record from the oxygen minimum zone (OMZ) off Pakistan for oxygen isotopes of planktic foraminifera and alkenone-derived sea surface temperatures (SST). Significant SST changes of up to 3°C which cannot be explained by changes in the alkenone-producing coccolithophorid species (inferred from the Gephyrocapsa oceanica / Emiliania huxleyi ratio) suggest that SST changes are driven by changes in the monsoon strength. Our high-(decadal)-resolution data indicate that the late Holocene in the northeastern Arabian Sea was not characterized by a stable uniform climate, as inferred from the Greenland ice cores, but by variations in the dominance of the SW monsoon conditions with significant effects on temperatures. Highest SST fluctuations of up to 3.0°C and 2.5°C were observed for the time interval from 4600 to 3300 years B.P. and during the past 500 years. The significant, short-term SST changes during the past 500 years might be related to climatic instabilities known from the northern latitudes ("Little Ice Age") and confirm global effects. Surface salinity values, reconstructed from delta18O records after correction for temperature-related oxygen isotope fractionation, suggest that in general, the past 5000 years were characterized by higher-than-recent evaporation and more intense SW monsoon conditions. However, between 4600 and 3700 years B.P., evaporation dropped, SW monsoon weakened, and NE monsoon conditions were comparatively enhanced. For the past 1500 years we infer strongly fluctuating monsoon conditions. Comparisons of reconstructed salinity records with ice accumulation data from published Tibetan ice core and Tibetan tree ring width data reveal that during the past 2000 years, enhanced evaporation in the northeastern Arabian Sea correlates with periods of increased ice accumulation in Tibet, and vice versa. This suggests a strong climatic relationship between both monsoon-controlled areas.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main purpose of this study is to assess the relationship between four bioclimatic indices for cattle (environmental stress, heat load, modified heat load, and respiratory rate predictor indices) and three main milk components (fat, protein, and milk yield) considering uncertainty. The climate parameters used to calculate the climate indices were taken from the NASA-Modern Era Retrospective-Analysis for Research and Applications (NASA-MERRA) reanalysis from 2002 to 2010. Cow milk data were considered for the same period from April to September when the cows use the natural pasture. The study is based on a linear regression analysis using correlations as a summarizing diagnostic. Bootstrapping is used to represent uncertainty information in the confidence intervals. The main results identify an interesting relationship between the milk compounds and climate indices under all climate conditions. During spring, there are reasonably high correlations between the fat and protein concentrations vs. the climate indices, whereas there are insignificant dependencies between the milk yield and climate indices. During summer, the correlation between the fat and protein concentrations with the climate indices decreased in comparison with the spring results, whereas the correlation for the milk yield increased. This methodology is suggested for studies investigating the impacts of climate variability/change on food and agriculture using short term data considering uncertainty.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on regional-scale studies, aboveground production and litter decomposition are thought to positively covary, because they are driven by shared biotic and climatic factors. Until now we have been unable to test whether production and decomposition are generally coupled across climatically dissimilar regions, because we lacked replicated data collected within a single vegetation type across multiple regions, obfuscating the drivers and generality of the association between production and decomposition. Furthermore, our understanding of the relationships between production and decomposition rests heavily on separate meta-analyses of each response, because no studies have simultaneously measured production and the accumulation or decomposition of litter using consistent methods at globally relevant scales. Here, we use a multi-country grassland dataset collected using a standardized protocol to show that live plant biomass (an estimate of aboveground net primary production) and litter disappearance (represented by mass loss of aboveground litter) do not strongly covary. Live biomass and litter disappearance varied at different spatial scales. There was substantial variation in live biomass among continents, sites and plots whereas among continent differences accounted for most of the variation in litter disappearance rates. Although there were strong associations among aboveground biomass, litter disappearance and climatic factors in some regions (e.g. U.S. Great Plains), these relationships were inconsistent within and among the regions represented by this study. These results highlight the importance of replication among regions and continents when characterizing the correlations between ecosystem processes and interpreting their global-scale implications for carbon flux. We must exercise caution in parameterizing litter decomposition and aboveground production in future regional and global carbon models as their relationship is complex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work examines stable isotope ratios of carbon, oxygen and hydrogen in annual growth rings of trees. Isotopic composition in wood cellulose is used as a tool to study past climate. The method benefits from the accurate and precise dating provided by dendrochronology. In this study the origin, nature and the strength of climatic correlations are studied on different temporal scales and at different sites in Finland. The origin of carbon isotopic signal is in photosynthetic fractionation. The basic physical and chemical fractionations involved are reasonably well understood. This was confirmed by measuring instantaneous photosynthetic discrimination on Scots pine (Pinus sylvestris L.). The internal conductance of CO2 was recognized to have a significant impact on the observed fractionation, and further investigations are suggested to quantify its role in controlling the isotopic signal of photosynthates. Isotopic composition of the produced biomass can potentially be affected by variety of external factors that induce physiological changes in trees. Response of carbon isotopic signal in tree ring cellulose to changes in resource availability was assessed in a manipulation experiment. It showed that the signal was relatively stable despite of changes in water and nitrogen availability to the tree. Palaeoclimatic reconstructions are typically based on functions describing empirical relationship between isotopic and climatic parameters. These empirical relationships may change depending on the site conditions, species and timeframe studied. Annual variation in Scots pine tree ring carbon and oxygen isotopic composition was studied in northern and in central eastern Finland and annual variation in tree ring latewood carbon, oxygen and hydrogen isotopic ratio in Oak (Quercus robur L.) was studied in southern Finland. In all of the studied sites at least one of the studied isotope ratios was shown to record climate strongly enough to be used in climatic reconstructions. Using the observed relationships, four-century-long climate reconstructions from living Scots pine were created for northern and central eastern Finland. Also temporal stability of the relationships between three proxy indicators, tree ring growth and carbon and oxygen isotopic composition was studied during the four-hundred-year period. Isotope ratios measured from tree rings in Finland were shown to be sensitive indicators of climate. Increasing understanding of environmental controls and physiological mechanisms affecting tree ring isotopic composition will make possible more accurate interpretation of isotope data. This study also demonstrated that by measuring multiple isotopes and physical proxies from the same tree rings, additional information on tree physiology can be obtained. Thus isotopic ratios measured from tree ring cellulose provide means to improve the reliability of climate reconstructions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The σD values of nitrated cellulose from a variety of trees covering a wide geographic range have been measured. These measurements have been used to ascertain which factors are likely to cause σD variations in cellulose C-H hydrogen.

It is found that a primary source of tree σD variation is the σD variation of the environmental precipitation. Superimposed on this are isotopic variations caused by the transpiration of the leaf water incorporated by the tree. The magnitude of this transpiration effect appears to be related to relative humidity.

Within a single tree, it is found that the hydrogen isotope variations which occur for a ring sequence in one radial direction may not be exactly the same as those which occur in a different direction. Such heterogeneities appear most likely to occur in trees with asymmetric ring patterns that contain reaction wood. In the absence of reaction wood such heterogeneities do not seem to occur. Thus, hydrogen isotope analyses of tree ring sequences should be performed on trees which do not contain reaction wood.

Comparisons of tree σD variations with variations in local climate are performed on two levels: spatial and temporal. It is found that the σD values of 20 North American trees from a wide geographic range are reasonably well-correlated with the corresponding average annual temperature. The correlation is similar to that observed for a comparison of the σD values of annual precipitation of 11 North American sites with annual temperature. However, it appears that this correlation is significantly disrupted by trees which grew on poorly drained sites such as those in stagnant marshes. Therefore, site selection may be important in choosing trees for climatic interpretation of σD values, although proper sites do not seem to be uncommon.

The measurement of σD values in 5-year samples from the tree ring sequences of 13 trees from 11 North American sites reveals a variety of relationships with local climate. As it was for the spatial σD vs climate comparison, site selection is also apparently important for temporal tree σD vs climate comparisons. Again, it seems that poorly-drained sites are to be avoided. For nine trees from different "well-behaved" sites, it was found that the local climatic variable best related to the σD variations was not the same for all sites.

Two of these trees showed a strong negative correlation with the amount of local summer precipitation. Consideration of factors likely to influence the isotopic composition of summer rain suggests that rainfall intensity may be important. The higher the intensity, the lower the σD value. Such an effect might explain the negative correlation of σD vs summer precipitation amount for these two trees. A third tree also exhibited a strong correlation with summer climate, but in this instance it was a positive correlation of σD with summer temperature.

The remaining six trees exhibited the best correlation between σD values and local annual climate. However, in none of these six cases was it annual temperature that was the most important variable. In fact annual temperature commonly showed no relationship at all with tree σD values. Instead, it was found that a simple mass balance model incorporating two basic assumptions yielded parameters which produced the best relationships with tree σD values. First, it was assumed that the σD values of these six trees reflected the σD values of annual precipitation incorporated by these trees. Second, it was assumed that the σD value of the annual precipitation was a weighted average of two seasonal isotopic components: summer and winter. Mass balance equations derived from these assumptions yielded combinations of variables that commonly showed a relationship with tree σD values where none had previously been discerned.

It was found for these "well-behaved" trees that not all sample intervals in a σD vs local climate plot fell along a well-defined trend. These departures from the local σD VS climate norm were defined as "anomalous". Some of these anomalous intervals were common to trees from different locales. When such widespread commonalty of an anomalous interval occurred, it was observed that the interval corresponded to an interval in which drought had existed in the North American Great Plains.

Consequently, there appears to be a combination of both local and large scale climatic information in the σD variations of tree cellulose C-H hydrogen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examined whether the relationship between climate and salmon production was linked through the effect of climate on the growth of sockeye salmon (Oncorhynchus nerka) at sea. Smolt length and juvenile, immature, and maturing growth rates were estimated from increments on scales of adult sockeye salmon that returned to the Karluk River and Lake system on Kodiak Island, Alaska, over 77 years, 1924–2000. Survival was higher during the warm climate regimes and lower during the cool regime. Growth was not correlated with survival, as estimated from the residuals of the Ricker stock-recruitment model. Juvenile growth was correlated with an atmospheric forcing index and immature growth was correlated with the amount of coastal precipitation, but the magnitude of winter and spring coastal downwelling in the Gulf of Alaska and the Pacific Northwest atmospheric patterns that influence the directional bifurcation of the Pacific Current were not related to the growth of Karluk sockeye salmon. However, indices of sea surface temperature, coastal precipitation, and atmospheric circulation in the eastern North Pacific were correlated with the survival of Karluk sockeye salmon. Winter and spring precipitation and atmospheric circulation are possible processes linking survival to climate variation in Karluk sockeye salmon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

River fisheries in Africa are important because of their contribution of animal protein to human diets. Such fisheries are highly dependent on hydrological regimes and show considerable year-to-year variation in response to natural climatic events. River flow regimes are being increasingly altered by withdrawals by man, principally for agriculture. The modification of hydrological regimes is leading to diminishing catches of fish and changes in the number and size of the species caught. Given that the trend to remove water from rivers for agriculture and power generation will continue, better appraisals of the impacts of such withdrawals are urgently needed so the policies for water allocation can be better defined. The development of tools to aid in such decision-making is equally important.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An association between long-term changes in the solar cycle and the frequency of El Niño events has been identified in historical records of El Niño and sunspot number. Although no known mechanism can explain the apparent relationship, the association is strong. A possible coupling between the sun and the ocean's mixed layer, involving ENSO, is worthy of further study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The stable isotope composition of waters (delta H-2, delta O-18) can be used as a natural tracer of hydrologic processes in systems affected by acid mine drainage. We investigated the delta H-2 and delta O-18 values of pore waters from four oxidizing sulfidic mine tailings impoundments in different climatic regions of Chile (Piuquenes at La Andina with Alpine climate, Cauquenes and Caren at El Teniente with Mediterranean climate, and Talabre at the Chuquicamata deposit with hyperarid climate). No clear relationship was found between altitude and isotopic composition. The observed displacement of the tailings pore waters from the local meteoric water line toward higher delta O-18 values (by similar to +2% delta O-18 relative to delta H-2) is partly due to water-rock interaction processes, including hydration and O-isotope exchange with sulfates and Fe(III) oxyhydroxides produced by pyrite oxidation. In most tailings, from the saturated zone toward the surface, isotopically different zones can be distinguished. Zone I is characterized by an upward depletion of H-2 and O-18 in the pore waters from the saturated zone and the lowermost vadose zone, due to ascending diffused isotopically light water triggered by the constant loss of water vapor by evaporation at the surface. In zone II, the capillary flow of a mix of vapor and liquid water causes an evaporative isotopic enrichment in H-2 and O-18. At the top of the tailings in dry climate a zone III between the capillary zone and the surface contains isotopically light diffused and atmospheric water vapor. In temperate climates, the upper part of the profile is affected by recent rainfall and zone III may not differ isotopically from zone II.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present investigation, the impacts of the variability of the climatic parameters on the yields of major crops grown in the State are analyzed. In particular, the effects of rainfall variability on the water balances of the different regions in the State have been studied. Through this analysis the drought climatology of the region has been studied along with an overview of the climatic shifts involved in individual years. The relationship between weather parameters and crop yields over the State has been analyzed with case studies of two crops- coconut and paddy. Crop-weather models for forecasting coconut and paddy yields have been developed, which could be used for planning purposes

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The emergence behaviour of weed species in relation to cultural and meteorological events was studied. Dissimilarities between populations in dormancy and germination ecology, between-year maturation conditions and seed quality and burial site climate all contribute to potentially unpredictable variability. Therefore, a weed emergence data set was produced for weed seeds of Stellaria media and Chenopodium album matured and collected from three populations (Italy, Sweden and UK). The seeds were collected in two consecutive seasons (1999 and 2000) and subsequently buried in the autumn of the same year of maturation in eight contrasting climatic locations throughout Europe and the USA. The experiment sought to explore and explain differences between the three populations in their emergence behaviour. Evidence was demonstrated of synchrony in the timing of the emergence of different populations of a species at a given burial site. The relative magnitudes of emergence from the three populations at a given burial site in a given year were generally similar across all the burial sites in the study. The resulting data set was also used to construct a simple weed emergence model, which was tested for its application to the range of different burial environments and populations. The study demonstrated the possibility of using a simple thermal time-based model to describe part of the emergence behaviour across different burial sites, seed populations and seasons, and a simple winter chilling relationship to adjust for the magnitude of the flush of emergence at a given burial site. This study demonstrates the possibility of developing robust generic models for simple predictions of emergence timing across populations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concentrations of dissolved organic carbon have increased in many, but not all, surface waters across acid impacted areas of Europe and North America over the last two decades. Over the last eight years several hypotheses have been put forward to explain these increases, but none are yet accepted universally. Research in this area appears to have reached a stalemate between those favouring declining atmospheric deposition, climate change or land management as the key driver of long-term DOC trends. While it is clear that many of these factors influence DOC dynamics in soil and stream waters, their effect varies over different temporal and spatial scales. We argue that regional differences in acid deposition loading may account for the apparent discrepancies between studies. DOC has shown strong monotonic increases in areas which have experienced strong downward trends in pollutant sulphur and/or seasalt deposition. Elsewhere climatic factors, that strongly influence seasonality, have also dominated inter-annual variability, and here long-term monotonic DOC trends are often difficult to detect. Furthermore, in areas receiving similar acid loadings, different catchment characteristics could have affected the site specific sensitivity to changes in acidity and therefore the magnitude of DOC release in response to changes in sulphur deposition. We suggest that confusion over these temporal and spatial scales of investigation has contributed unnecessarily to the disagreement over the main regional driver(s) of DOC trends, and that the data behind the majority of these studies is more compatible than is often conveyed.