974 resultados para Clifford, Algebra de


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

70.00% 70.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 30A05, 33E05, 30G30, 30G35, 33E20.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For an n(t) transmit, n(r) receive antenna system (n(t) x nr system), a full-rate space time block code (STBC) transmits min(n(t), n(r)) complex symbols per channel use. In this paper, a scheme to obtain a full-rate STBC for 4 transmit antennas and any n(r), with reduced ML-decoding complexity is presented. The weight matrices of the proposed STBC are obtained from the unitary matrix representations of a Clifford Algebra. By puncturing the symbols of the STBC, full rate designs can be obtained for n(r) < 4. For any value of n(r), the proposed design offers the least ML-decoding complexity among known codes. The proposed design is comparable in error performance to the well known Perfect code for 4 transmit antennas while offering lower ML-decoding complexity. Further, when n(r) < 4, the proposed design has higher ergodic capacity than the punctured Perfect code. Simulation results which corroborate these claims are presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We extend extreme learning machine (ELM) classifiers to complex Reproducing Kernel Hilbert Spaces (RKHS) where the input/output variables as well as the optimization variables are complex-valued. A new family of classifiers, called complex-valued ELM (CELM) suitable for complex-valued multiple-input–multiple-output processing is introduced. In the proposed method, the associated Lagrangian is computed using induced RKHS kernels, adopting a Wirtinger calculus approach formulated as a constrained optimization problem similarly to the conventional ELM classifier formulation. When training the CELM, the Karush–Khun–Tuker (KKT) theorem is used to solve the dual optimization problem that consists of satisfying simultaneously smallest training error as well as smallest norm of output weights criteria. The proposed formulation also addresses aspects of quaternary classification within a Clifford algebra context. For 2D complex-valued inputs, user-defined complex-coupled hyper-planes divide the classifier input space into four partitions. For 3D complex-valued inputs, the formulation generates three pairs of complex-coupled hyper-planes through orthogonal projections. The six hyper-planes then divide the 3D space into eight partitions. It is shown that the CELM problem formulation is equivalent to solving six real-valued ELM tasks, which are induced by projecting the chosen complex kernel across the different user-defined coordinate planes. A classification example of powdered samples on the basis of their terahertz spectral signatures is used to demonstrate the advantages of the CELM classifiers compared to their SVM counterparts. The proposed classifiers retain the advantages of their ELM counterparts, in that they can perform multiclass classification with lower computational complexity than SVM classifiers. Furthermore, because of their ability to perform classification tasks fast, the proposed formulations are of interest to real-time applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Motivated by Ooguri and Vafa, we study superstrings in flat R-4 in a constant self-dual graviphoton background. The supergravity equations of motion are satisfied in this background which deforms the N = 2 d = 4 flat space super-Poincare algebra to another algebra with eight supercharges. A D-brane in this space preserves a quarter of the supercharges; i.e. N = 1/2 supersymmetry is realized linearly, and the remaining N = 3/2 supersymmetry is realized nonlinearly. The theory on the brane can be described as a theory in noncommutative superspace in which the chiral fermionic coordinates theta(alpha) of N = 1 d = 4 superspace are not Grassman variables but satisfy a Clifford algebra.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Some properties of the Clifford algebras Cl-3,Cl-0, Cl-1,Cl-3, Cl-4,Cl-1 similar or equal to C circle times Cl-1,Cl-3 and Cl-2,Cl-4 are presented, and three isomorphisms between the Dirac-Clifford algebra C circle times Cl-1,Cl-3 and Cl-4,Cl-1 are exhibited, in order to construct conformal maps and twistors, using the paravector model of spacetime. The isomorphism between the twistor space inner product isometry group SU( 2,2) and the group $pin(+)(2,4) is also investigated, in the light of a suitable isomorphism between C circle times Cl-1,Cl-3 and Cl-4,Cl-1. After reviewing the conformal spacetime structure, conformal maps are described in Minkowski spacetime as the twisted adjoint representation of $ pin(+)(2,4), acting on paravectors. Twistors are then presented via the paravector model of Clifford algebras and related to conformal maps in the Clifford algebra over the Lorentzian R-4,(1) spacetime.We construct twistors in Minkowski spacetime as algebraic spinors associated with the Dirac-Clifford algebra C circle times Cl-1,Cl-3 using one lower spacetime dimension than standard Clifford algebra formulations, since for this purpose, the Clifford algebra over R-4,R-1 is also used to describe conformal maps, instead of R-2,(4). Our formalism sheds some new light on the use of the paravector model and generalizations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Motivated by Ooguri and Vafa, we study superstrings in flat ℝ4 in a constant self-dual graviphoton background. The supergravity equations of motion are satisfied in this background which deforms the M = 2 d = 4 flat space super-Poincaré algebra to another algebra with eight supercharges. A D-brane in this space preserves a quarter of the supercharges; i.e. N = 1/2 supersymmetry is realized linearly, and the remaining N = 3/2 supersymmetry is realized nonlinearly. The theory on the brane can be described as a theory in noncommutative superspace in which the chiral fermionic coordinates θα of N = 1 d = 4 superspace are not Grassman variables but satisfy a Clifford algebra. © SISSA/ISAS 2003.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 12F12, 15A66.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A set of sufficient conditions to construct lambda-real symbol Maximum Likelihood (ML) decodable STBCs have recently been provided by Karmakar et al. STBCs satisfying these sufficient conditions were named as Clifford Unitary Weight (CUW) codes. In this paper, the maximal rate (as measured in complex symbols per channel use) of CUW codes for lambda = 2(a), a is an element of N is obtained using tools from representation theory. Two algebraic constructions of codes achieving this maximal rate are also provided. One of the constructions is obtained using linear representation of finite groups whereas the other construction is based on the concept of right module algebra over non-commutative rings. To the knowledge of the authors, this is the first paper in which matrices over non-commutative rings is used to construct STBCs. An algebraic explanation is provided for the 'ABBA' construction first proposed by Tirkkonen et al and the tensor product construction proposed by Karmakar et al. Furthermore, it is established that the 4 transmit antenna STBC originally proposed by Tirkkonen et al based on the ABBA construction is actually a single complex symbol ML decodable code if the design variables are permuted and signal sets of appropriate dimensions are chosen.