4 resultados para Cleistogamy


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research was done to study the reproductive system of papaya hermaphrodite plant based on the histochemical nature of pollen grain, stigma receptivity, in vivo pollen grain germination and pollen:ovule ratio. In the histochemical analysis, pollen grains were stained by using Sudan IV and I2KI solution ; the stigma receptivity was assessed by alpha-naphthtyl acetate solution in closed and opened flowers. Pollen germination and pollen tube growing were examined in flower buds near anthesis with 0.1% aniline blue. To estimate the pollen:ovule ratio , anthers from each flower bud were dissected and all pollen grains were counted; ovules were dissected from ovaries and were counted under stereomicroscope. The results indicated that papaya pollen grains are of lipidic nature; the stigmas were receptive before the opening and until 48 hours after opening; the pollen grains germinated and emitted polinic tube before flower opening and the pollen:ovule ratio indicated the predominance of autogamous reproductive system. These results indicate that hermaphrodite papaya trees is preferentially of optional autogamous with cleistogamy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A biologia reprodutiva de Ruellia brevifolia foi estudada em populações naturais do sudeste brasileiro. R. brevifolia é um subarbusto que forma agrupamentos densos em áreas abertas mas sombreadas e floresce o ano todo, produzindo flores casmógamas (CH) e cleistógamas (CL) nas estações úmida e seca, respectivamente. A cleistogamia é do tipo climática, originando sementes no período de maior estresse ambiental. Flores CH são inodoras e possuem corola tubulosa e vermelha, sendo hercogâmicas ou não; apresentam protoginia, antese diurna e duram dois dias. Néctar é o principal recurso floral, sendo produzido em baixa quantidade (5,2 mil ± 2,36) e com concentração de açúcares em torno de 30%. Flores CL assemelham-se a botões jovens de flores CH e apresentam redução de tamanho principalmente no androceu e na corola. A razão pólen/óvulo das flores CL é ca. de 60% menor que a das flores CH devido a menor quantidade de grãos de pólen. R. brevifolia é autocompatível embora alogamia seja favorecida pela protoginia e pelas flores hercogâmicas. Autopolinização espontânea parece estar relacionada às flores CH não hercogâmicas. Beija-flores, principalmente Amazilia lactea, e borboletas, em especial Heliconius etilla narcaea e Phoebis argante, são os polinizadores de R. brevifolia. Os beija-flores visitam R. brevifolia apenas durante os picos de floração, quando há elevado número de flores. A baixa quantidade de néctar por flor, bem como as visitas de A. lactea em "linha-de-captura", provavelmente, promovem a polinização cruzada. Embora as borboletas visitem especialmente dentro e entre agrupamentos próximos, também visitam as flores nos períodos de baixa densidade floral, quando se deslocam a maiores distâncias, favorecendo a polinização cruzada.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

International Perspective The development of GM technology continues to expand into increasing numbers of crops and conferred traits. Inevitably, the focus remains on the major field crops of soybean, maize, cotton, oilseed rape and potato with introduced genes conferring herbicide tolerance and/or pest resistance. Although there are comparatively few GM crops that have been commercialised to date, GM versions of 172 plant species have been grown in field trials in 31 countries. European Crops with Containment Issues Of the 20 main crops in the EU there are four for which GM varieties are commercially available (cotton, maize for animal feed and forage, and oilseed rape). Fourteen have GM varieties in field trials (bread wheat, barley, durum wheat, sunflower, oats, potatoes, sugar beet, grapes, alfalfa, olives, field peas, clover, apples, rice) and two have GM varieties still in development (rye, triticale). Many of these crops have hybridisation potential with wild and weedy relatives in the European flora (bread wheat, barley, oilseed rape, durum wheat, oats, sugar beet and grapes), with escapes (sunflower); and all have potential to cross-pollinate fields non-GM crops. Several fodder crops, forestry trees, grasses and ornamentals have varieties in field trials and these too may hybridise with wild relatives in the European flora (alfalfa, clover, lupin, silver birch, sweet chestnut, Norway spruce, Scots pine, poplar, elm, Agrostis canina, A. stolonifera, Festuca arundinacea, Lolium perenne, L. multiflorum, statice and rose). All these crops will require containment strategies to be in place if it is deemed necessary to prevent transgene movement to wild relatives and non-GM crops. Current Containment Strategies A wide variety of GM containment strategies are currently under development, with a particular focus on crops expressing pharmaceutical products. Physical containment in greenhouses and growth rooms is suitable for some crops (tomatoes, lettuce) and for research purposes. Aquatic bioreactors of some non-crop species (algae, moss, and duckweed) expressing pharmaceutical products have been adopted by some biotechnology companies. There are obvious limitations of the scale of physical containment strategies, addressed in part by the development of large underground facilities in the US and Canada. The additional resources required to grow plants underground incurs high costs that in the long term may negate any advantage of GM for commercial productioNatural genetic containment has been adopted by some companies through the selection of either non-food/feed crops (algae, moss, duckweed) as bio-pharming platforms or organisms with no wild relatives present in the local flora (safflower in the Americas). The expression of pharmaceutical products in leafy crops (tobacco, alfalfa, lettuce, spinach) enables growth and harvesting prior to and in the absence of flowering. Transgenically controlled containment strategies range in their approach and degree of development. Plastid transformation is relatively well developed but is not suited to all traits or crops and does not offer complete containment. Male sterility is well developed across a range of plants but has limitations in its application for fruit/seed bearing crops. It has been adopted in some commercial lines of oilseed rape despite not preventing escape via seed. Conditional lethality can be used to prevent flowering or seed development following the application of a chemical inducer, but requires 100% induction of the trait and sufficient application of the inducer to all plants. Equally, inducible expression of the GM trait requires equally stringent application conditions. Such a method will contain the trait but will allow the escape of a non-functioning transgene. Seed lethality (‘terminator’ technology) is the only strategy at present that prevents transgene movement via seed, but due to public opinion against the concept it has never been trialled in the field and is no longer under commercial development. Methods to control flowering and fruit development such as apomixis and cleistogamy will prevent crop-to-wild and wild-to-crop pollination, but in nature both of these strategies are complex and leaky. None of the genes controlling these traits have as yet been identified or characterised and therefore have not been transgenically introduced into crop species. Neither of these strategies will prevent transgene escape via seed and any feral apomicts that form are arguably more likely to become invasives. Transgene mitigation reduces the fitness of initial hybrids and so prevents stable introgression of transgenes into wild populations. However, it does not prevent initial formation of hybrids or spread to non-GM crops. Such strategies could be detrimental to wild populations and have not yet been demonstrated in the field. Similarly, auxotrophy prevents persistence of escapes and hybrids containing the transgene in an uncontrolled environment, but does not prevent transgene movement from the crop. Recoverable block of function, intein trans-splicing and transgene excision all use recombinases to modify the transgene in planta either to induce expression or to prevent it. All require optimal conditions and 100% accuracy to function and none have been tested under field conditions as yet. All will contain the GM trait but all will allow some non-native DNA to escape to wild populations or to non-GM crops. There are particular issues with GM trees and grasses as both are largely undomesticated, wind pollinated and perennial, thus providing many opportunities for hybridisation. Some species of both trees and grass are also capable of vegetative propagation without sexual reproduction. There are additional concerns regarding the weedy nature of many grass species and the long-term stability of GM traits across the life span of trees. Transgene stability and conferred sterility are difficult to trial in trees as most field trials are only conducted during the juvenile phase of tree growth. Bio-pharming of pharmaceutical and industrial compounds in plants Bio-pharming of pharmaceutical and industrial compounds in plants offers an attractive alternative to mammalian-based pharmaceutical and vaccine production. Several plantbased products are already on the market (Prodigene’s avidin, β-glucuronidase, trypsin generated in GM maize; Ventria’s lactoferrin generated in GM rice). Numerous products are in clinical trials (collagen, antibodies against tooth decay and non-Hodgkin’s lymphoma from tobacco; human gastric lipase, therapeutic enzymes, dietary supplements from maize; Hepatitis B and Norwalk virus vaccines from potato; rabies vaccines from spinach; dietary supplements from Arabidopsis). The initial production platforms for plant-based pharmaceuticals were selected from conventional crops, largely because an established knowledge base already existed. Tobacco and other leafy crops such as alfalfa, lettuce and spinach are widely used as leaves can be harvested and no flowering is required. Many of these crops can be grown in contained greenhouses. Potato is also widely used and can also be grown in contained conditions. The introduction of morphological markers may aid in the recognition and traceability of crops expressing pharmaceutical products. Plant cells or plant parts may be transformed and maintained in culture to produce recombinant products in a contained environment. Plant cells in suspension or in vitro, roots, root cells and guttation fluid from leaves may be engineered to secrete proteins that may be harvested in a continuous, non-destructive manner. Most strategies in this category remain developmental and have not been commercially adopted at present. Transient expression produces GM compounds from non-GM plants via the utilisation of bacterial or viral vectors. These vectors introduce the trait into specific tissues of whole plants or plant parts, but do not insert them into the heritable genome. There are some limitations of scale and the field release of such crops will require the regulation of the vector. However, several companies have several transiently expressed products in clinical and pre-clinical trials from crops raised in physical containment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Under greenhouse conditions, Epidendrum nocturnum Jacq. plants produce fruits by both self-fertilization and cleistogamy. Although adapted to these reproductive processes the species respond also to cross-pollination. Seeds without embryos and with one embryo are usual but occasionally seeds with two, three or four embryos are produced. Multiple embryos are formed by polyembryony and apomixis. © 1985 Annals of Botany Company.