872 resultados para Classification of zeolites
Resumo:
Zeolites have established themselves as industrial catalysts for over two decades for a variety of hydrocarbon processing reactions where acidity and shape selectivity are important factors. As solid catalysts, zeolites may be advantageous and superior compared to their homogenous counterparts due to their characteristic properties. It is only in recent years that the utility of zeolites for organic synthesis is recognized for producing specific organic intermediates and fine chemicals in high selectivity. In this thesis an attempt has been made to compare the catalytic activity of some medium and large pore zeolites in a few alkylation and acylation reactions. The work reported in the present study is basically centered around the following zeolites namely, ZSM-5, mordenite, zeolite Y and beta. The major reactions carried out were benzoylation of o-xylene, propionylation of toluene and anisole and benzylation of oxylene. . The programme involves the synthesis, modifications and characterization of the zeolite catalysts by various methods. The influence of various parameters such as non-framework cations, Si/Al ratio of zeolites, temperature of the reaction, catalyst concentration, molar ratio of the reactants and recycling of the catalysts were also examined upon the conversion of reactants and the formation of the desired products in the alkylation/ acylation reactions. The general conclusions drawn by us from the results obtained are summarized in the last chapter of the thesis. Zeolite beta ofi'ers interesting opportunities as a potential catalyst in alkylation reactions and the area of catalysis by medium and large pore zeolites is very fascinating and there is plenty of scope for further research in this field. Moreover, zeolite based catalysts are effective in meeting current industrial processing and more stringent environment pollution limits.
Resumo:
Light Detection and Ranging (LIDAR) has great potential to assist vegetation management in power line corridors by providing more accurate geometric information of the power line assets and vegetation along the corridors. However, the development of algorithms for the automatic processing of LIDAR point cloud data, in particular for feature extraction and classification of raw point cloud data, is in still in its infancy. In this paper, we take advantage of LIDAR intensity and try to classify ground and non-ground points by statistically analyzing the skewness and kurtosis of the intensity data. Moreover, the Hough transform is employed to detected power lines from the filtered object points. The experimental results show the effectiveness of our methods and indicate that better results were obtained by using LIDAR intensity data than elevation data.
Resumo:
This paper explores a method of comparative analysis and classification of data through perceived design affordances. Included is discussion about the musical potential of data forms that are derived through eco-structural analysis of musical features inherent in audio recordings of natural sounds. A system of classification of these forms is proposed based on their structural contours. The classifications include four primitive types; steady, iterative, unstable and impulse. The classification extends previous taxonomies used to describe the gestural morphology of sound. The methods presented are used to provide compositional support for eco-structuralism.
Resumo:
Objective: To demonstrate properties of the International Classification of the External Cause of Injury (ICECI) as a tool for use in injury prevention research. Methods: The Childhood Injury Prevention Study (CHIPS) is a prospective longitudinal follow up study of a cohort of 871 children 5–12 years of age, with a nested case crossover component. The ICECI is the latest tool in the International Classification of Diseases (ICD) family and has been designed to improve the precision of coding injury events. The details of all injury events recorded in the study, as well as all measured injury related exposures, were coded using the ICECI. This paper reports a substudy on the utility and practicability of using the ICECI in the CHIPS to record exposures. Interrater reliability was quantified for a sample of injured participants using the Kappa statistic to measure concordance between codes independently coded by two research staff. Results: There were 767 diaries collected at baseline and event details from 563 injuries and exposure details from injury crossover periods. There were no event, location, or activity details which could not be coded using the ICECI. Kappa statistics for concordance between raters within each of the dimensions ranged from 0.31 to 0.93 for the injury events and 0.94 and 0.97 for activity and location in the control periods. Discussion: This study represents the first detailed account of the properties of the ICECI revealed by its use in a primary analytic epidemiological study of injury prevention. The results of this study provide considerable support for the ICECI and its further use.
Resumo:
This report explains the objectives, datasets and evaluation criteria of both the clustering and classification tasks set in the INEX 2009 XML Mining track. The report also describes the approaches and results obtained by the different participants.
Resumo:
A one-sided classifier for a given class of languages converges to 1 on every language from the class and outputs 0 infinitely often on languages outside the class. A two-sided classifier, on the other hand, converges to 1 on languages from the class and converges to 0 on languages outside the class. The present paper investigates one-sided and two-sided classification for classes of recursive languages. Theorems are presented that help assess the classifiability of natural classes. The relationships of classification to inductive learning theory and to structural complexity theory in terms of Turing degrees are studied. Furthermore, the special case of classification from only positive data is also investigated.
Resumo:
Inspection of solder joints has been a critical process in the electronic manufacturing industry to reduce manufacturing cost, improve yield, and ensure product quality and reliability. The solder joint inspection problem is more challenging than many other visual inspections because of the variability in the appearance of solder joints. Although many research works and various techniques have been developed to classify defect in solder joints, these methods have complex systems of illumination for image acquisition and complicated classification algorithms. An important stage of the analysis is to select the right method for the classification. Better inspection technologies are needed to fill the gap between available inspection capabilities and industry systems. This dissertation aims to provide a solution that can overcome some of the limitations of current inspection techniques. This research proposes two inspection steps for automatic solder joint classification system. The “front-end” inspection system includes illumination normalisation, localization and segmentation. The illumination normalisation approach can effectively and efficiently eliminate the effect of uneven illumination while keeping the properties of the processed image. The “back-end” inspection involves the classification of solder joints by using Log Gabor filter and classifier fusion. Five different levels of solder quality with respect to the amount of solder paste have been defined. Log Gabor filter has been demonstrated to achieve high recognition rates and is resistant to misalignment. Further testing demonstrates the advantage of Log Gabor filter over both Discrete Wavelet Transform and Discrete Cosine Transform. Classifier score fusion is analysed for improving recognition rate. Experimental results demonstrate that the proposed system improves performance and robustness in terms of classification rates. This proposed system does not need any special illumination system, and the images are acquired by an ordinary digital camera. In fact, the choice of suitable features allows one to overcome the problem given by the use of non complex illumination systems. The new system proposed in this research can be incorporated in the development of an automated non-contact, non-destructive and low cost solder joint quality inspection system.
Resumo:
The XML Document Mining track was launched for exploring two main ideas: (1) identifying key problems and new challenges of the emerging field of mining semi-structured documents, and (2) studying and assessing the potential of Machine Learning (ML) techniques for dealing with generic ML tasks in the structured domain, i.e., classification and clustering of semi-structured documents. This track has run for six editions during INEX 2005, 2006, 2007, 2008, 2009 and 2010. The first five editions have been summarized in previous editions and we focus here on the 2010 edition. INEX 2010 included two tasks in the XML Mining track: (1) unsupervised clustering task and (2) semi-supervised classification task where documents are organized in a graph. The clustering task requires the participants to group the documents into clusters without any knowledge of category labels using an unsupervised learning algorithm. On the other hand, the classification task requires the participants to label the documents in the dataset into known categories using a supervised learning algorithm and a training set. This report gives the details of clustering and classification tasks.