840 resultados para Classification image technique


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nonlinear refractive index, n(2), of films based on the new glass system Sb(2)O(3)-Sb(2)S(3) was measured at 1064 nm with laser pulses of 15 ps, using a single-beam nonlinear image technique in presence of a phase object. The films were prepared from bulk glasses by RF-sputtering. A large value of n(2) = 3 x 10-(15) m(2)/W, which is three orders of magnitude larger than for CS(2), was determined. The result shows the strong potential of antimony-sulfide glass films for integrated nonlinear optics. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose an accurate technique for obtaining highly collimated beams, which also allows testing the collimation degree of a beam. It is based on comparing the period of two different self-images produced by a single diffraction grating. In this way, variations in the period of the diffraction grating do not affect to the measuring procedure. Self-images are acquired by two CMOS cameras and their periods are determined by fitting the variogram function of the self-images to a cosine function with polynomial envelopes. This way, loss of accuracy caused by imperfections of the measured self-images is avoided. As usual, collimation is obtained by displacing the collimation element with respect to the source along the optical axis. When the period of both self-images coincides, collimation is achieved. With this method neither a strict control of the period of the diffraction grating nor a transverse displacement, required in other techniques, are necessary. As an example, a LED considering paraxial approximation and point source illumination is collimated resulting a resolution in the divergence of the beam of σ φ = ± μrad.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’objectif de cette recherche est la création d’une plateforme en ligne qui permettrait d’examiner les différences individuelles de stratégies de traitement de l’information visuelle dans différentes tâches de catégorisation des visages. Le but d’une telle plateforme est de récolter des données de participants géographiquement dispersés et dont les habiletés en reconnaissance des visages sont variables. En effet, de nombreuses études ont montré qu’il existe de grande variabilité dans le spectre des habiletés à reconnaître les visages, allant de la prosopagnosie développementale (Susilo & Duchaine, 2013), un trouble de reconnaissance des visages en l’absence de lésion cérébrale, aux super-recognizers, des individus dont les habiletés en reconnaissance des visages sont au-dessus de la moyenne (Russell, Duchaine & Nakayama, 2009). Entre ces deux extrêmes, les habiletés en reconnaissance des visages dans la population normale varient. Afin de démontrer la faisabilité de la création d’une telle plateforme pour des individus d’habiletés très variables, nous avons adapté une tâche de reconnaissance de l’identité des visages de célébrités utilisant la méthode Bubbles (Gosselin & Schyns, 2001) et avons recruté 14 sujets contrôles et un sujet présentant une prosopagnosie développementale. Nous avons pu mettre en évidence l’importance des yeux et de la bouche dans l’identification des visages chez les sujets « normaux ». Les meilleurs participants semblent, au contraire, utiliser majoritairement le côté gauche du visage (l’œil gauche et le côté gauche de la bouche).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Frog species have been declining worldwide at unprecedented rates in the past decades. There are many reasons for this decline including pollution, habitat loss, and invasive species [1]. To preserve, protect, and restore frog biodiversity, it is important to monitor and assess frog species. In this paper, a novel method using image processing techniques for analyzing Australian frog vocalisations is proposed. An FFT is applied to audio data to produce a spectrogram. Then, acoustic events are detected and isolated into corresponding segments through image processing techniques applied to the spectrogram. For each segment, spectral peak tracks are extracted with selected seeds and a region growing technique is utilised to obtain the contour of each frog vocalisation. Based on spectral peak tracks and the contour of each frog vocalisation, six feature sets are extracted. Principal component analysis reduces each feature set down to six principal components which are tested for classification performance with a k-nearest neighbor classifier. This experiment tests the proposed method of classification on fourteen frog species which are geographically well distributed throughout Queensland, Australia. The experimental results show that the best average classification accuracy for the fourteen frog species can be up to 87%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a neural network based technique for the classification of segments of road images into cracks and normal images. The density and histogram features are extracted. The features are passed to a neural network for the classification of images into images with and without cracks. Once images are classified into cracks and non-cracks, they are passed to another neural network for the classification of a crack type after segmentation. Some experiments were conducted and promising results were obtained. The selected results and a comparative analysis are included in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

User queries over image collections, based on semantic similarity, can be processed in several ways. In this paper, we propose to reuse the rules produced by rule-based classifiers in their recognition models as query pattern definitions for searching image collections.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this research, we introduce an approach to enhance the discriminative capability of features by employing image-to-image variation minimization. In order to minimize image-to-image variation, we will estimate the cover image from the stego image by decompressing the stego image, transforming the decompressed image and recompressing back. Since the effect of the embedding operation in an image steganography is actually a noise adding process to the image, applying these three processes will smooth out the noise and hence the estimated cover image can be obtained.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In competitive combat sporting environments like boxing, the statistics on a boxer's performance, including the amount and type of punches thrown, provide a valuable source of data and feedback which is routinely used for coaching and performance improvement purposes. This paper presents a robust framework for the automatic classification of a boxer's punches. Overhead depth imagery is employed to alleviate challenges associated with occlusions, and robust body-part tracking is developed for the noisy time-of-flight sensors. Punch recognition is addressed through both a multi-class SVM and Random Forest classifiers. A coarse-to-fine hierarchical SVM classifier is presented based on prior knowledge of boxing punches. This framework has been applied to shadow boxing image sequences taken at the Australian Institute of Sport with 8 elite boxers. Results demonstrate the effectiveness of the proposed approach, with the hierarchical SVM classifier yielding a 96% accuracy, signifying its suitability for analysing athletes punches in boxing bouts.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new particle image technique was developed to analyze the dispersion of tracer particles in an internally circulating fluidized bed (ICFB). The movement course and the concentration distribution of tracer particles in the bed were imaged and the degree of inhomogeneity of tracer particles was analyzed. The lateral and axial dispersion coefficients of particles were calculated for various zones in ICFB. Results indicate that the lateral diffusion coefficient in the fluidized bed with uneven air distribution is significantly higher than that in uniform bubbling beds with even air distribution. The dispersion coefficients are different along bed length and height.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Grey Level Co-occurrence Matrix (GLCM), one of the best known tool for texture analysis, estimates image properties related to second-order statistics. These image properties commonly known as Haralick texture features can be used for image classification, image segmentation, and remote sensing applications. However, their computations are highly intensive especially for very large images such as medical ones. Therefore, methods to accelerate their computations are highly desired. This paper proposes the use of programmable hardware to accelerate the calculation of GLCM and Haralick texture features. Further, as an example of the speedup offered by programmable logic, a multispectral computer vision system for automatic diagnosis of prostatic cancer has been implemented. The performance is then compared against a microprocessor based solution.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The demands of image processing related systems are robustness, high recognition rates, capability to handle incomplete digital information, and magnanimous flexibility in capturing shape of an object in an image. It is exactly here that, the role of convex hulls comes to play. The objective of this paper is twofold. First, we summarize the state of the art in computational convex hull development for researchers interested in using convex hull image processing to build their intuition, or generate nontrivial models. Secondly, we present several applications involving convex hulls in image processing related tasks. By this, we have striven to show researchers the rich and varied set of applications they can contribute to. This paper also makes a humble effort to enthuse prospective researchers in this area. We hope that the resulting awareness will result in new advances for specific image recognition applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Zones of mixing between shallow groundwaters of different composition were unravelled by two-way regionalized classification, a technique based on correspondence analysis (CA), cluster analysis (ClA) and discriminant analysis (DA), aided by gridding, map-overlay and contouring tools. The shallow groundwaters are from a granitoid plutonite in the Funda o region (central Portugal). Correspondence analysis detected three natural clusters in the working dataset: 1, weathering; 2, domestic effluents; 3, fertilizers. Cluster analysis set an alternative distribution of the samples by the three clusters. Group memberships obtained by correspondence analysis and by cluster analysis were optimized by discriminant analysis, gridded memberships as follows: codes 1, 2 or 3 were used when classification by correspondence analysis and cluster analysis produced the same results; code 0 when the grid node was first assigned to cluster 1 and then to cluster 2 or vice versa (mixing between weathering and effluents); code 4 in the other cases (mixing between agriculture and the other influences). Code-3 areas were systematically surrounded by code-4 areas, an observation attributed to hydrodynamic dispersion. Accordingly, the extent of code-4 areas in two orthogonal directions was assumed proportional to the longitudinal and transverse dispersivities of local soils. The results (0.7-16.8 and 0.4-4.3 m, respectively) are acceptable at the macroscopic scale. The ratios between longitudinal and transverse dispersivities (1.2-11.1) are also in agreement with results obtained by other studies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a general methodology for learning articulated motions that, despite having non-linear correlations, are cyclical and have a defined pattern of behavior Using conventional algorithms to extract features from images, a Bayesian classifier is applied to cluster and classify features of the moving object. Clusters are then associated in different frames and structure learning algorithms for Bayesian networks are used to recover the structure of the motion. This framework is applied to the human gait analysis and tracking but applications include any coordinated movement such as multi-robots behavior analysis.