1000 resultados para Classificação Supervisionada e Não-Supervisionada
Resumo:
A espécie florestal Myracrodruon urundeuva (Fr. All.) figura desde 1992 na lista de espécies da flora brasileira ameaçadas de extinção e, contudo, manifesta comportamento monodominante em algumas regiões do Estado de Minas Gerais, sobretudo na região do Médio Rio Doce. Este trabalho teve por objetivo comparar métodos de classificação supervisionada de imagens Rapideye para mapeamento de fragmentos florestais monodominados por Myracrodruon urundeuva em Tumiritinga, MG. Foram avaliadas a classificação pelo algoritmo da Maximaverossimilhança (Maxver) e a classificação por Redes Neurais Artificiais (RNA). Foram testadas 19 combinações envolvendo diferentes bandas, componentes principais e o índice de vegetação da diferença normalizada para a classificação da imagem Rapideye. O treinamento da rede foi realizado variando-se a taxa de aprendizado, o número de interações e o número de neurônios na camada interna. A avaliação dos mapas temáticos produzidos foi realizada através dos índices Kappa e Kappa condicional para a classe de uso do solo "aroeira" e pela análise das Matrizes de Confusão. O método que apresentou melhor desempenho foi a classificação de todas as bandas da imagem Rapideye pelo algoritmo Maxver, apresentando coeficientes Kappa 80 e Kappa condicional 90. O mapa temático gerado teve exatidão do usuário igual a 93% e exatidão do produtor igual a 90%, sendo as maiores confusões do classificador para a classe Aroeira Monodominante acometidas entre as classes Mata Nativa e Pasto Manejado. Da imagem temática produzida, extraiu-se a informação de que 22% do Município de Tumiritinga se encontrava sob ocupação da aroeira em monodominância. A análise do uso e cobertura do solo no município não retrata, na região de estudo, o quadro anunciado de espécie ameaçada de extinção, no qual M. urundeuva se encontra.
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
O objetivo deste trabalho foi estimar a área plantada com soja por meio da normalização da matriz de erros gerada a partir da classificação supervisionada de imagens TM/Landsat‑5. Foram avaliados oito municípios no Estado do Paraná, com dados referentes à safra de 2003/2004. As classificações foram realizadas por meio dos métodos paralelepípedo e máxima verossimilhança, dando origem à "máscara de soja". Os valores do índice Kappa dos oito municípios ficaram acima de 0,6. As estimativas de área de soja, corrigidas por matriz de erros, apresentaram alta correlação com as estimativas oficiais do estado e com as estimativas geradas a partir de um método alternativo denominado "expansão direta". A estimativa de área de soja por meio da normalização da matriz de erros apresenta menor custo e pode subsidiar métodos convencionais na estimativa menos subjetiva de safras.
Resumo:
A utilização de matéria-prima de origem florestal aumentou significativamente nas últimas décadas. A busca por alta produtividade concretizou-se com a introdução de espécies exóticas, principalmente Eucalyptus sp. e Pinus sp. Neste trabalho avaliou-se a precisão da classificação digital obtida no levantamento de povoamentos florestais implantados e naturais da área da carta de Cachoeira do Sul - RS, utilizando técnicas de geoprocessamento, sensoriamento remoto, SIG (sistema de informação geográfica) e GPS (sistema de posicionamento global). Verificou-se que a área é ocupada por vegetação natural (35,54%), Pinus sp. (1,89%) e Eucalyptus sp. (0,77%), cuja precisão na classificação supervisionada digital foi: Exatidão global (85,23%), Kappa (84,90%) e Tau (77,74%). Concluiu-se que os três índices de acurácia podem ser utilizados, apesar de os índices Kappa e Tau mostrarem-se mais consistentes.
Resumo:
A aplicação de metodologias inovadoras no estudo da zona costeira, como as Técnicas de Informação Geográfica (TIG), utilizando fotografia aérea e imagens de satélite de alta resolução espacial, é um assunto proeminente da investigação das áreas das Ciências Geo-Espaciais e da Engenharia Costeira. Um conjunto de fotografias aéreas, entre 1958 e 2002, foi analisado visualmente num ambiente de Sistemas de Informação Geográfica (SIG), com o objectivo de identificar hidroformas e hidromorfologias costeiras, no sector entre Esmoriz e Mira. Este trabalho tem como objectivo principal identificar e analisar formas/padrões morfológicas e hidrodinâmicos (hidroformas e hidromorfologias) recorrendo a algoritmos da classificação de imagem. Para alcançar esse objectivo foram aplicados diferentes métodos de classificação de imagem, nomeadamente técnicas de classificação supervisionada e não supervisionada, utilizando o software PCI Geomatica®. Foram testados diferentes algoritmos na classificação supervisionada, (paralelepípedo, distância mínima e máxima probabilidade) e na classificação não supervisionada, o K-médias e o ISODATA. Os algoritmos de classificação supervisionada apresentaram bons resultados, demonstrados pela precisão global e coeficiente Kappa, de 95.65% - 0.95661 e de 95.85% - 0.95840, para o método do paralelepípedo e para o método da máxima probabilidade respectivamente. Os algoritmos de classificação não supervisionada (K-médias e ISODATA) permitiram identificar várias classes, como por exemplo, praia, face da praia e zona de rebentação. Os resultados obtidos foram comparados (sobrepostos) com os da análise visual em ambiente SIG, mostrando uma boa concordância nas hidroformas e hidromorfologias identificadas.
Resumo:
No processo de classificação de uma imagem digital, o atributo textura pode ser uma fonte importante de informações. Embora o processo de caracterização da textura em uma imagem seja mais difícil, se comparado ao processo de caracterização de atributos espectrais, sabe-se que o emprego daquele atributo pode aumentar significativamente a exatidão na classificação da imagem. O objetivo deste trabalho de pesquisa consiste em desenvolver e testar um método de classificação supervisionado em imagens digitais com base em atributos de textura. O método proposto implementa um processo de filtragem baseado nos filtros de Gabor. Inicialmente, é gerado um conjunto de filtros de Gabor adequados às freqüências espaciais associadas às diferentes classes presentes na imagem a ser classificada. Em cada caso, os parâmetros utilizados por cada filtro são estimados a partir das amostras disponíveis, empregando-se a transformada de Fourier. Cada filtro gera, então, uma imagem filtrada que quantifica a freqüência espacial definida no filtro. Este processo resulta em um certo número de imagens filtradas as quais são denominadas de "bandas texturais". Desta forma, o problema que era originalmente unidimensional passa a ser multi-dimensional, em que cada pixel passa a ser definido por um vetor cuja dimensionalidade é idêntica ao número de filtros utilizados. A imagem em várias "bandas texturais" pode ser classificada utilizando-se um método de classificação supervisionada. No presente trabalho foi utilizada a Máxima Verossimilhança Gaussiana. A metodologia proposta é então testada, utilizandose imagens sintéticas e real. Os resultados obtidos são apresentados e analisados.
Resumo:
O objetivo principal deste trabalho é propor uma metodologia de classificação de imagens de sensoriamento remoto que integre a importância de atributos de textura na seleção de feições, através da utilização de freqüências espaciais de cada classe textural e sua direção, com a eficiência das redes neurais artificiais para classificá-las. O processo é composto por uma etapa de filtragem baseada nos filtros de Gabor, seguida de uma fase de classificação através de uma rede neural Multi-Layer Perceptron com algoritmo BackPropagation. A partir da transformada de Fourier são estimados os parâmetros a serem utilizados na constituição dos filtros de Gabor, adequados às freqüências espaciais associadas a cada classe presente na imagem a ser classificada. Desta forma, cada filtro gera uma imagem filtrada. O conjunto de filtros determina um conjunto de imagens filtradas (canais texturais). A classificação pixel a pixel é realizada pela rede neural onde cada pixel é definido por um vetor de dimensionalidade igual ao número de filtros do conjunto. O processo de classificação através da rede neural Multi-Layer Perceptron foi realizado pelo método de classificação supervisionada. A metodologia de classificação de imagens de sensoriamento remoto proposta neste trabalho foi testada em imagens sintética e real de dimensões 256 x 256 pixels. A análise dos resultados obtidos é apresentada sob a forma de uma Matriz de Erros, juntamente com a discussão dos mesmos.
Resumo:
The aim of this work is to discriminate vegetation classes throught remote sensing images from the satellite CBERS-2, related to winter and summer seasons in the Campos Gerais region Paraná State, Brazil. The vegetation cover of the region presents different kinds of vegetations: summer and winter cultures, reforestation areas, natural areas and pasture. Supervised classification techniques like Maximum Likelihood Classifier (MLC) and Decision Tree were evaluated, considering a set of attributes from images, composed by bands of the CCD sensor (1, 2, 3, 4), vegetation indices (CTVI, DVI, GEMI, NDVI, SR, SAVI, TVI), mixture models (soil, shadow, vegetation) and the two first main components. The evaluation of the classifications accuracy was made using the classification error matrix and the kappa coefficient. It was defined a high discriminatory level during the classes definition, in order to allow separation of different kinds of winter and summer crops. The classification accuracy by decision tree was 94.5% and the kappa coefficient was 0.9389 for the scene 157/128. For the scene 158/127, the values were 88% and 0.8667, respectively. The classification accuracy by MLC was 84.86% and the kappa coefficient was 0.8099 for the scene 157/128. For the scene 158/127, the values were 77.90% and 0.7476, respectively. The results showed a better performance of the Decision Tree classifier than MLC, especially to the classes related to cultivated crops, indicating the use of the Decision Tree classifier to the vegetation cover mapping including different kinds of crops.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Dissertação de Mestrado, Gestão e Conservação da Natureza, 27 de Outubro de 2015, Universidade dos Açores.
Resumo:
A malária é uma doença infecciosa complexa, que resulta do “vírus” plasmodium, e manifesta-se sob cinco tipos distintos de espécies protozoários (plasmodium vivax, plasmodium ovale, plasmodium falciparum, plasmodium malariae e plasmodium Knowlesi), atacando sobretudo os glóbulos vermelhos. Considerada a quinta maior causa de morte por doenças infecciosas em todo o mundo após doenças respiratórias, VIH/SIDA, doenças diarreicas e tuberculose, no continente africano, a malária é considerada a segunda causa do aumento da mortalidade, após VIH/SIDA. No caso particular da Guiné-Bissau, esta constitui a principal causa do incremento da morbilidade e da mortalidade naquele país, onde, em 2012 foram notificados 129.684 casos de paludismo, dos quais 370 resultaram em óbitos. Partindo da realidade acima constatada, em particular, da complexidade e o impacto global da doença associada a uma forte mortalidade e morbilidade, concluiu-se ser necessário abordar esta temática, utilizando os SIG e a DR no sentido de determinar as regiões de elevado risco. Entendeu-se serem necessárias novas abordagens e novas ferramentas de análise dos dados epidemiológicos e consequentemente novas metodologias que possibilitem a determinação de áreas de risco por malária. O presente estudo, pretende demonstrar o papel dos SIG e DR na determinação das regiões de risco por malária. A metodologia utilizada centrou-se numa abordagem quantitativa baseada na hierarquização das variáveis. Pretende-se, assim abordar os impactos da malária e simultaneamente demonstrar as potencialidades dos SIG e das ferramentas de Análise Espacial no estudo da disseminação da mesma na Guiné-Bissau.
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Eletrónica Médica)
Resumo:
Técnicas de mapeamento digital podem contribuir para agilizar a realização de levantamentos pedológicos detalhados. Objetivou-se com este trabalho obter um mapa digital de solos (MDS) com uso de redes neurais artificiais (RNA), utilizando correlações entre unidades de mapeamento (UM) e covariáveis ambientais. A área utilizada compreendeu aproximadamente 12.000 ha localizados no município de Barra Bonita, SP. A partir do resultado de uma análise de agrupamento das covariáveis ambientais, foram escolhidas cinco áreas de referência para realizar o mapeamento convencional. As UM identificadas subsidiaram a aplicação da técnica de RNA. Utilizaram-se o simulador de redes neurais JavaNNS e o algoritmo de aprendizado backpropagation. Pontos de referência foram coletados para avaliar o desempenho do mapa digital produzido. A posição na paisagem e o material de origem subjacente foram determinantes para o reconhecimento dos delineamentos das UM. Houve boa concordância entre as UM delineadas pelo MDS e pelo método convencional. A comparação entre os pontos de referência e o mapa de solos digital evidenciou exatidão de 72 %. O uso da abordagem MDS utilizada pode contribuir para diminuir a falta de informações semidetalhadas de solos em locais ainda não mapeados, tomando-se como base informações pedológicas obtidas de áreas de referência adjacentes.
Resumo:
Para eliminar divergências na interpretação dos resultados e agilizar os atuais métodos de detecção de fraudes em café torrado e moído, foi estabelecido um método baseado na análise por imagem e fundamentado no princípio de que diferentes materiais de origem orgânica, como o pó de café, podem apresentar reflectâncias distintas em diferentes comprimentos de onda do espectro eletromagnético. Partiu-se da hipótese de que o pó de café adulterado, quando submetido a uma fonte artificial de iluminação, apresenta uma reflectância, nos canais vermelho (R), verde (G) e azul (B), diferente em relação à do pó de café não-adulterado. Após as etapas de limpeza, secagem e homogeneização, foram geradas imagens multiespectrais das amostras de café, por meio de uma lupa acoplada a uma câmara CCD (Charge Coupled Device). A quantificação das impurezas na amostra foi obtida utilizando-se curvas de calibração entre a área relativa obtida pela classificação supervisionada de imagens e a porcentagem de impurezas presentes nas amostras. Esse novo método permite agilidade da resposta, ausência de subjetividade nos resultados e não-destruição das amostras analisadas, e assegura um patamar mínimo de detecção de 95% das impurezas do produto.
Resumo:
Este trabalho teve o objetivo de avaliar a evolução do uso da terra no município de Botucatu - SP, no período de três anos, considerando-se seis tipos de cobertura vegetal (cana-de-açúcar, reflorestamento, floresta nativa, pastagem, cítrus e outros), tendo como base as imagens de satélite Landsat 5, bandas 3; 4 e 5, órbita 220, ponto 76, quadrante A, passagem de 8 de junho de 1999. O Sistema de Informações Geográficas - IDRISI for Windows 3.2, foi utilizado para as análises. Os resultados mostraram que esse programa foi eficiente para auxiliar na identificação e mapeamento das áreas com uso da terra, facilitando o processamento dos dados. As imagens de satélite TM/LANDSAT 5 forneceram um excelente banco de dados para a classificação supervisionada. O município não vem sendo preservado ambientalmente, pois apresenta-se coberto com menos de 20% de florestas nativas, mínimo exigido por lei. As áreas de pastagem, principal componente da paisagem do município, confirmam a vocação da região para a pecuária.