439 resultados para Cladophora glomerata
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Species of Pithophora occasionally appear in Europe and are associated mostly with the tropical, higher water plants, cultivated in numerous botanical gardens. In June 1973 pale green, branched threads were discovered in the pond of the Wroclaw Botanical Garden, amongst filaments of Spirogyra crassa (Kutz.) Czurda emend. and Cladophora glomerata (L.) Kutz. floating on the water surface. They were maintained for several weeks in crude cultures and produced numerous, dark akinetes tightly packed with reserve material. This collected material was found to be a member of the family Pithophora, Wittr. Further examinations identified the material as Pithophora oedogonia. The findings point out that it is probable, that species of Pithophora Wittr. can become acclimatized in Europe, primarily in ponds of botanical gardens, where consequently they are able to tangle easily with higher tropical plants.
Resumo:
武汉东湖是一个浅水富营养湖泊,其沿岸带底栖藻类群落的季节分布特征明显,夏季的优势种群是一些体积很小的硅藻类曲壳藻(Achnanthes spp.),其他大部分季节是绿藻门的团集刚毛藻(Cladophora glomerata)和硅藻门的变异直链藻(Melosira varians)。不同样点间的底栖藻类现存量差异不显著,但优势种类不同,以团集刚毛藻为优势的绿藻在处于中富营养区域的磨山样点比例最高,以变异直链藻为优势种的硅藻在严重富营养化的水果湖样点中比例最高。底栖藻类月平均现存量(以叶绿素a计)的时间变化
Resumo:
Organizmy autotroficzne żyjące w ekosystemach wodnych, czerpią azot nieorganiczny z azotanów, azotynów i amoniaku. Związki te dostają się do zbiorników wodnych wraz ze spływem powierzchniowym, opadami oraz wodami gruntowymi. Wszystkie formy związków azotu ulegają licznym przemianom biochemicznym zachodzącym w słupie wody. Mowa tu głównie o amonifikacji, nitryfikacji oraz denitryfikacji częściowej i całkowitej. Jako, że z tymi przemianami wiąże się także zmiana stopnia utlenienia, zajście powyższych reakcji w głównej mierze zależy od stężenia tlenu w wodzie (Lampert i Sommer 2001). Glony z rodzaju błonica (Ulva) i gałęzatka (Cladophora) większą część swojego cyklu życiowego spędzają blisko powierzchni wody, gdzie przeprowadzają fotosyntezę i intensywnie się namnażają. Wiąże się również z wysokim zapotrzebowaniem na biogeny oraz z silną konkurencją o inne zasoby (jak np. światło) z innymi roślinami wodnymi. Obok węgla, wodoru i tlenu glony i rośliny wodne wymagają do wzrostu i swojego rozwoju dodatkowych elementów (między innymi N, P i mikroelementy). Większość z tych składników jest zwykle obecna w ekosystemie wodnym w odpowiednich ilościach w stosunku do potrzeb organizmów fotosyntetyzujących i nie należy od czynników limitujących wzrost. Jednak zawartości nieorganicznych form azotu i fosforu mogą być na tyle niskie, że powodują limitację wzrostu makroglonów w wodach powierzchniowych. Asymilacja pierwiastków biogennych (N, P) z wody zachodzi dzięki specjalnym, energo-zależnym i powiązanych z błoną komórkową systemom permeazy, których funkcją jest zapewnienie podwyższonego, wewnątrzkomórkowego stężenia tych jonów jako substratów do dalszych szlaków i procesów enzymatycznych (Gumiński 1990).
Resumo:
A comparative analysis of the photosynthetic responses to temperature (10-30°C) was carried out under short-term laboratory conditions by chlorophyll fluorescence and oxygen (O2) evolution. Ten lotic macroalgal species from southeastern Brazil (20°11-20°48′S, 49°18-49°41′W) were tested, including Bacillariophyta, Chlorophyta, Cyanophyta, Rhodophyta and Xanthophyta. Temperature had significant effects on electron transport rate (ETR) only for three species (Terpsinoe musica, Bacillariophyta; Cladophora glomerata, Chlorophyta; and C. coeruleus, Rhodophyta), with highest values at 25-30°C, whereas the remaining species had no significant responses. It also had similar effects on non-photochemical quenching and ETR. Differences in net photosynthesis/dark respiration ratios at distinct temperatures were found, with an increasing trend of respiration with higher temperatures. This implies in a decreasing balance between net primary production and temperature, representing more critical conditions toward higher temperatures for most species. In contrast, high net photosynthesis and photosynthesis/dark respiration ratios at high and wide ranges of temperature were found in three species of green algae, suggesting that these algae can be important primary producers in lotic ecosystems, particularly in tropical regions. Optimal photosynthetic rates were observed under similar environmental temperatures for five species (two rhodophytes, two chlorophytes and one diatom) considering both techniques, suggesting acclimation to their respective ambient temperatures. C. coeruleus was the only species with peaks of ETR and O 2 evolution under similar field-measured temperatures. All species kept values of ETR and net photosynthesis close to the optimum under a broad range of temperatures. Increased non-photochemical quenching, as a measure of thermal dissipation of excess energy, toward higher temperatures was observed in some species, as well as positive correlation of non-photochemical quenching with ETR, and were interpreted as two mechanisms of adaptation of the photosynthetic apparatus to temperature changes. Different optimal temperatures were found for individual species by each technique, generally under lower temperatures by O2 evolution, indicating dependence on distinct factors: increases in temperature generally induced higher ETR due to increased enzymatic activity, whereas increments of enzymatic activity were compensated by increased respiration and photorespiration leading to decreases in net photosynthesis.
Resumo:
At present time, there is a lack of knowledge on the interannual climate-related variability of zooplankton communities of the tropical Atlantic, central Mediterranean Sea, Caspian Sea, and Aral Sea, due to the absence of appropriate databases. In the mid latitudes, the North Atlantic Oscillation (NAO) is the dominant mode of atmospheric fluctuations over eastern North America, the northern Atlantic Ocean and Europe. Therefore, one of the issues that need to be addressed through data synthesis is the evaluation of interannual patterns in species abundance and species diversity over these regions in regard to the NAO. The database has been used to investigate the ecological role of the NAO in interannual variations of mesozooplankton abundance and biomass along the zonal array of the NAO influence. Basic approach to the proposed research involved: (1) development of co-operation between experts and data holders in Ukraine, Russia, Kazakhstan, Azerbaijan, UK, and USA to rescue and compile the oceanographic data sets and release them on CD-ROM, (2) organization and compilation of a database based on FSU cruises to the above regions, (3) analysis of the basin-scale interannual variability of the zooplankton species abundance, biomass, and species diversity.
Resumo:
Nuisance growths of Cladophora have been associated with eutrophication. A review of the literature, however, reveals a scarcity of relevant experimental growth studies. Sampling experimental streams reveals that the addition of sewage effluent to good quality water alters the flora from that dominated by Potamogetan crispus to one dominated by CLadophora. Spatial and temporal differences in biomass of taxa present are discussed in the context of accompanying physicochemical data. In laboratory batch culture, growth of unialgal C. glomerata was accompanied by elevation of medium pH - considered largely responsible for the poor growth in such culture. However, appropriate experimental conditions and indices of growth were selected and the effects of various herbicides assessed. Diquat and terbutryne were shown to possess algicidal activity towards Cladophora. A closed continuous culture apparatus was developed: growth proceeded through lag, logarithmic and linear phases. Inoculum size and medium flow rate had significant effects on growth, and were standardized. In continuous culture, specific growth rate increased linearly with increased duration of light per day, up to 24 hours, and increased light intensity, up to 6000 lux - the highest intensity tested. Comparison of field and laboratory results suggests that ammonia toxicity is attributable to the undissociated form. In the laboratory, 185 µg/1 undissociated ammoniacal nitrogen reduced specific growth rate to 50% of that at 10 µg/1 undissociated ammcniacal nitrogen. 0.077-1.057 mg/1 NO2-N had no significant effect on growth. 7.2-15.2 mg/1 NO3-N had no significant effect on specific growth rate. Neither was any nitrate/phosphate interaction significant. At 4.9 mg/1 PO4-1, specific growth rate was only 48% of that at 1.9 g/1 P04-P. The critical medium PO4-P concentration was <0.1 mg/i. Specific growth rate was reduced to 50% of that in natural water by 0.036 mgCu/l, 0.070 mgzn/1 and 1.03 mgPb/l. Metal uptake was evaluated.
Resumo:
Genetic variation is the resource animal breeders exploit in stock improvement programs. Both the process of selection and husbandry practices employed in aquaculture will erode genetic variation levels overtime, hence the critical resource can be lost and this may compromise future genetic gains in breeding programs. The amount of genetic variation in five lines of Sydney Rock Oyster (SRO) that had been selected for QX (Queensland unknown) disease resistance were examined and compared with that in a wild reference population using seven specific SRO microsatellite loci. The five selected lines had significantly lower levels of genetic diversity than did the wild reference population with allelic diversity declining approximately 80%, but impacts on heterozygosity per locus were less severe. Significant deficiencies in heterozygotes were detected at six of the seven loci in both mass selected lines and the wild reference population. Against this trend however, a significant excess of heterozygotes was recorded at three loci Sgo9, Sgo14 and Sgo21 in three QX disease resistant lines (#2, #5 and #13). All populations were significantly genetic differentiated from each other based on pairwise FST values. A neighbour joining tree based on DA genetic distances showed a clear separation between all culture and wild populations. Results of this study show clearly, that the impacts of the stock improvement program for SRO has significantly eroded natural levels of genetic variation in the culture lines. This could compromise long-term genetic gains and affect sustainability of the SRO breeding program over the long-term.
Resumo:
Telomere length has been purported as a biomarker for age and could offer a non-lethal method for determining the age of wild-caught individuals. Molluscs, including oysters and abalone, are the basis of important fisheries globally and have been problematic to accurately age. To determine whether telomere length could provide an alternative means of ageing molluscs, we evaluated the relationship between telomere length and age using the commercially important Sydney rock oyster (Saccostrea glomerata). Telomere lengths were estimated from tissues of known age individuals from different age classes, locations and at different sampling times. Telomere length tended to decrease with age only in young oysters less than 18 months old, but no decrease was observed in older oysters aged 2-4 years. Regional and temporal differences in telomere attrition rates were also observed. The relationship between telomere length and age was weak, however, with individuals of identical age varying significantly in their telomere length making it an imprecise age biomarker in oysters.
Resumo:
A description of the algal genus Cladophora from Vol 10 of the ”Freshwater Flora of Poland”. Illustrations are included.
Resumo:
It was on July 1960 when 10 algal balls were acquired for exhibition at Suma Aquarium, Kobe. Permission to remove the specimens from the Lake Akan Reserve was given by the National Nature Reserve Committee. Algal balls, as a rule, lose their natural beauty when they are kept in an ordinary tank for a certain length of time. In an effort to retain the natural beauty it was decided to exhibit them in culture. This paper summarises the findings of this experiments with Cladophora sauteri. The author concludes that serious consideration has to be given as to the intensity of light, the sunlight, the water temperature and the nutrition for algal balls in culture in order to retain the natural beauty and shape.
Resumo:
In this study several parameters critical to the success of cryopreserving Sydney rock oyster (Saccostrea glomerata) larvae were investigated. They were: (1) cryoprotectants (10% dimethyl sulfoxide and 10% propylene glycol). (2) freezing protocols (with or without the seeding step). (3) larval concentrations (1,000, 3,000, 5,000, 10,000, 30,000 individuals mL(-1)). and (4) larval ages (6, 12, 24, 48 and 96 h old). The survival rates were determined as percentages of postthaw larvae performing active movements for the 6 and 12 h larvae or active cilia movement for the 24, 48 and 96 h larvae. Analyses showed that the difference in survival rates between different age classses was significant in all the experiments conducted, with the maximum survival rate being achieved in the 24-h-old larvae the postthaw survival rates of larvae cryopreserved with 10% dimethyl sulfoxide (93.1 +/- 0.2%) were significantly higher (P < 0.001) that those with 10% propylene glycol (81.5 +/- 0.4%). Differences in postthaw survival rates between different concentrations (1,000 30,000 individuals mL(-1)) were not significant within each of the three larval age classes (6-, 12-, and 24-h-old ) used.
Resumo:
Chemical examination of the green alga Cladophora fascicularis resulted in the isolation and characterization of a new porphyrin derivative, porphyrinolactone (1), along with five known phaeophytins 2-6 and fourteen sterols and cycloartanes. The structure of 1 was determined on the basis of spectroscopic analyses and by comparison of its NMR data with those of known phaeophytins. Compounds 1-6 displayed moderate inhibition of tumor necrosis factor alpha (TNF-alpha) induced nuclear factor-kappa B (NF-kappa B) activation, while 2 and 4 displayed potential inhibitory activity toward proteasome chymotripsin-like activation. The primary structure-activity relationship was also discussed.
Resumo:
Biosorption of Cr(VI) from aqueous solutions by nonliving green algae Cladophora albida was investigated in batch experiments. The influence of pH, algal dosage, initial Cr(VI) concentration, temperature and coexisting anions on removal efficiencies of C. albida was studied. Cr(VI) removal process was influenced significantly by the variation of pH, and the optimum pH was chosen at a range of 1.0-3.0. The optimum algal dosage 2 g/L was used in the experiment. The removal rate of Cr(VI) was relatively rapid in the first 60 min, but then the rate decreased gradually. Removal mechanism was studied by analyzing Cr(VI) and total Cr in the solution. Biosorption and bioreduction were involved in the Cr(VI) removal. Biosorption of Cr(VI) was the first step. followed by Cr(VI) bioreduction and Cr(III) biosorption on the algal biomass. Actual industrial wastewater was used to evaluate the practicality of the biomass C. albida. From a practical viewpoint, the abundant and economic biomass C. albida could be used for removal of Cr(VI) from wastewater by the reduction of toxic Cr(VI) to less toxic Cr(III). (C) 2008 Elsevier Ltd. All rights reserved.