974 resultados para Citation classification schemes
Resumo:
Incluye Bibliografía
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
El análisis de citas bibliográficas que usa variaciones de métodos de conteo provoca deformaciones en la evaluación del impacto. Para enriquecer el cálculo de los factores de impacto se necesita entender el tipo de influencia de los aportes de un investigador sobre el autor que los menciona. Para ello, se requiere realizar análisis de contenido del contexto de las citas que permita obtener su función, polaridad e influencia. El presente artículo trata sobre la definición de un esquema de anotación tendiente a la creación de un corpus de acceso público que sea la base de trabajo colaborativo en este campo, con miras al desarrollo de sistemas que permitan llevar adelante tareas de análisis de contenido con el objetivo planteado.
Resumo:
Purpose – The work presented in this paper aims to provide an approach to classifying web logs by personal properties of users. Design/methodology/approach – The authors describe an iterative system that begins with a small set of manually labeled terms, which are used to label queries from the log. A set of background knowledge related to these labeled queries is acquired by combining web search results on these queries. This background set is used to obtain many terms that are related to the classification task. The system then ranks each of the related terms, choosing those that most fit the personal properties of the users. These terms are then used to begin the next iteration. Findings – The authors identify the difficulties of classifying web logs, by approaching this problem from a machine learning perspective. By applying the approach developed, the authors are able to show that many queries in a large query log can be classified. Research limitations/implications – Testing results in this type of classification work is difficult, as the true personal properties of web users are unknown. Evaluation of the classification results in terms of the comparison of classified queries to well known age-related sites is a direction that is currently being exploring. Practical implications – This research is background work that can be incorporated in search engines or other web-based applications, to help marketing companies and advertisers. Originality/value – This research enhances the current state of knowledge in short-text classification and query log learning. Classification schemes, Computer networks, Information retrieval, Man-machine systems, User interfaces
Resumo:
Several investigators have recently proposed classification schemes for stratospheric dust particles [1-3]. In addition, extraterrestrial materials within stratospheric dust collections may be used as a measure of micrometeorite flux [4]. However, little attention has been given to the problems of the stratospheric collection as a whole. Some of these problems include: (a) determination of accurate particle abundances at a given point in time; (b) the extent of bias in the particle selection process; (c) the variation of particle shape and chemistry with size; (d) the efficacy of proposed classification schemes and (e) an accurate determination of physical parameters associated with the particle collection process (e.g. minimum particle size collected, collection efficiency, variation of particle density with time). We present here preliminary results from SEM, EDS and, where appropriate, XRD analysis of all of the particles from a collection surface which sampled the stratosphere between 18 and 20km in altitude. Determinations of particle densities from this study may then be used to refine models of the behavior of particles in the stratosphere [5].
Resumo:
Background: Protein phosphorylation is a generic way to regulate signal transduction pathways in all kingdoms of life. In many organisms, it is achieved by the large family of Ser/Thr/Tyr protein kinases which are traditionally classified into groups and subfamilies on the basis of the amino acid sequence of their catalytic domains. Many protein kinases are multidomain in nature but the diversity of the accessory domains and their organization are usually not taken into account while classifying kinases into groups or subfamilies. Methodology: Here, we present an approach which considers amino acid sequences of complete gene products, in order to suggest refinements in sets of pre-classified sequences. The strategy is based on alignment-free similarity scores and iterative Area Under the Curve (AUC) computation. Similarity scores are computed by detecting common patterns between two sequences and scoring them using a substitution matrix, with a consistent normalization scheme. This allows us to handle full-length sequences, and implicitly takes into account domain diversity and domain shuffling. We quantitatively validate our approach on a subset of 212 human protein kinases. We then employ it on the complete repertoire of human protein kinases and suggest few qualitative refinements in the subfamily assignment stored in the KinG database, which is based on catalytic domains only. Based on our new measure, we delineate 37 cases of potential hybrid kinases: sequences for which classical classification based entirely on catalytic domains is inconsistent with the full-length similarity scores computed here, which implicitly consider multi-domain nature and regions outside the catalytic kinase domain. We also provide some examples of hybrid kinases of the protozoan parasite Entamoeba histolytica. Conclusions: The implicit consideration of multi-domain architectures is a valuable inclusion to complement other classification schemes. The proposed algorithm may also be employed to classify other families of enzymes with multidomain architecture.
Resumo:
The amount of original imaging information produced yearly during the last decade has experienced a tremendous growth in all industries due to the technological breakthroughs in digital imaging and electronic storage capabilities. This trend is affecting the construction industry as well, where digital cameras and image databases are gradually replacing traditional photography. Owners demand complete site photograph logs and engineers store thousands of images for each project to use in a number of construction management tasks like monitoring an activity's progress and keeping evidence of the "as built" in case any disputes arise. So far, retrieval methodologies are done manually with the user being responsible for imaging classification according to specific rules that serve a limited number of construction management tasks. New methods that, with the guidance of the user, can automatically classify and retrieve construction site images are being developed and promise to remove the heavy burden of manually indexing images. In this paper, both the existing methods and a novel image retrieval method developed by the authors for the classification and retrieval of construction site images are described and compared. Specifically a number of examples are deployed in order to present their advantages and limitations. The results from this comparison demonstrates that the content based image retrieval method developed by the authors can reduce the overall time spent for the classification and retrieval of construction images while providing the user with the flexibility to retrieve images according different classification schemes.
Resumo:
Les employés d’un organisme utilisent souvent un schéma de classification personnel pour organiser les documents électroniques qui sont sous leur contrôle direct, ce qui suggère la difficulté pour d’autres employés de repérer ces documents et la perte possible de documentation pour l’organisme. Aucune étude empirique n’a été menée à ce jour afin de vérifier dans quelle mesure les schémas de classification personnels permettent, ou même facilitent, le repérage des documents électroniques par des tiers, dans le cadre d’un travail collaboratif par exemple, ou lorsqu’il s’agit de reconstituer un dossier. Le premier objectif de notre recherche était de décrire les caractéristiques de schémas de classification personnels utilisés pour organiser et classer des documents administratifs électroniques. Le deuxième objectif consistait à vérifier, dans un environnement contrôlé, les différences sur le plan de l’efficacité du repérage de documents électroniques qui sont fonction du schéma de classification utilisé. Nous voulions vérifier s’il était possible de repérer un document avec la même efficacité, quel que soit le schéma de classification utilisé pour ce faire. Une collecte de données en deux étapes fut réalisée pour atteindre ces objectifs. Nous avons d’abord identifié les caractéristiques structurelles, logiques et sémantiques de 21 schémas de classification utilisés par des employés de l’Université de Montréal pour organiser et classer les documents électroniques qui sont sous leur contrôle direct. Par la suite, nous avons comparé, à partir d'une expérimentation contrôlée, la capacité d’un groupe de 70 répondants à repérer des documents électroniques à l’aide de cinq schémas de classification ayant des caractéristiques structurelles, logiques et sémantiques variées. Trois variables ont été utilisées pour mesurer l’efficacité du repérage : la proportion de documents repérés, le temps moyen requis (en secondes) pour repérer les documents et la proportion de documents repérés dès le premier essai. Les résultats révèlent plusieurs caractéristiques structurelles, logiques et sémantiques communes à une majorité de schémas de classification personnels : macro-structure étendue, structure peu profonde, complexe et déséquilibrée, regroupement par thème, ordre alphabétique des classes, etc. Les résultats des tests d’analyse de la variance révèlent des différences significatives sur le plan de l’efficacité du repérage de documents électroniques qui sont fonction des caractéristiques structurelles, logiques et sémantiques du schéma de classification utilisé. Un schéma de classification caractérisé par une macro-structure peu étendue et une logique basée partiellement sur une division par classes d’activités augmente la probabilité de repérer plus rapidement les documents. Au plan sémantique, une dénomination explicite des classes (par exemple, par utilisation de définitions ou en évitant acronymes et abréviations) augmente la probabilité de succès au repérage. Enfin, un schéma de classification caractérisé par une macro-structure peu étendue, une logique basée partiellement sur une division par classes d’activités et une sémantique qui utilise peu d’abréviations augmente la probabilité de repérer les documents dès le premier essai.
Resumo:
Malware has become a major threat in the last years due to the ease of spread through the Internet. Malware detection has become difficult with the use of compression, polymorphic methods and techniques to detect and disable security software. Those and other obfuscation techniques pose a problem for detection and classification schemes that analyze malware behavior. In this paper we propose a distributed architecture to improve malware collection using different honeypot technologies to increase the variety of malware collected. We also present a daemon tool developed to grab malware distributed through spam and a pre-classification technique that uses antivirus technology to separate malware in generic classes. © 2009 SPIE.
Archival Classification and Knowledge Organization: Theoretical Possibilities for the Archival Field
Resumo:
The main goal of this study is to outline a possible relation between archival classification and knowledge organization theory. In this sense, we seek to contribute to the conceptual classification in Archival Science, since there is a lack of systematization about archival classification; not just classification, but even the study of historical and conceptual aspects of the discipline. In the context of knowledge organization there is a considerable amount of research on how to build classification schemes and indexing systems that can help contribute to and expand archival classification theory. In order to comprehend this vast field of theories and methodologies we construct a parallel comparing the classification concepts in both areas and analyzing these concepts.
Resumo:
A collection of photocopies of documents, chiefly from univerisity libraries, assembled by the Systems and Precedures Exchange Center, and accompanied by SPEC flyer no. 85, June 1982.
Resumo:
Issued in separate vols. by classification, A through Z.
Resumo:
Dimensionality reduction is a very important step in the data mining process. In this paper, we consider feature extraction for classification tasks as a technique to overcome problems occurring because of “the curse of dimensionality”. Three different eigenvector-based feature extraction approaches are discussed and three different kinds of applications with respect to classification tasks are considered. The summary of obtained results concerning the accuracy of classification schemes is presented with the conclusion about the search for the most appropriate feature extraction method. The problem how to discover knowledge needed to integrate the feature extraction and classification processes is stated. A decision support system to aid in the integration of the feature extraction and classification processes is proposed. The goals and requirements set for the decision support system and its basic structure are defined. The means of knowledge acquisition needed to build up the proposed system are considered.
Resumo:
Things change. Words change, meaning changes and use changes both words and meaning. In information access systems this means concept schemes such as thesauri or clas- sification schemes change. They always have. Concept schemes that have survived have evolved over time, moving from one version, often called an edition, to the next. If we want to manage how words and meanings - and as a conse- quence use - change in an effective manner, and if we want to be able to search across versions of concept schemes, we have to track these changes. This paper explores how we might expand SKOS, a World Wide Web Consortium (W3C) draft recommendation in order to do that kind of tracking.The Simple Knowledge Organization System (SKOS) Core Guide is sponsored by the Semantic Web Best Practices and Deployment Working Group. The second draft, edited by Alistair Miles and Dan Brickley, was issued in November 2005. SKOS is a “model for expressing the basic structure and content of concept schemes such as thesauri, classification schemes, subject heading lists, taxonomies, folksonomies, other types of controlled vocabulary and also concept schemes embedded in glossaries and terminologies” in RDF. How SKOS handles version in concept schemes is an open issue. The current draft guide suggests using OWL and DCTERMS as mechanisms for concept scheme revision.As it stands an editor of a concept scheme can make notes or declare in OWL that more than one version exists. This paper adds to the SKOS Core by introducing a tracking sys- tem for changes in concept schemes. We call this tracking system vocabulary ontogeny. Ontogeny is a biological term for the development of an organism during its lifetime. Here we use the ontogeny metaphor to describe how vocabularies change over their lifetime. Our purpose here is to create a conceptual mechanism that will track these changes and in so doing enhance information retrieval and prevent document loss through versioning, thereby enabling persistent retrieval.
Resumo:
Classification schemes are built at a particular point in time; at inception, they reflect a worldview indicative of that time. This is their strength, but results in potential weak- nesses as worldviews change. For example, if a scheme of mathematics is not updated even though the state of the art has changed, then it is not a very useful scheme to users for the purposes of information retrieval. However, change in schemes is a good thing. Changing allows designers of schemes to update their model and serves as a responsible mediator between resources and users. But change does come at a cost. In the print world, we revise universal clas- sification schemes—sometimes in drastic ways—and this means that over time, the power of a classification scheme to collocate is compromised if we do not account for scheme change in the organization of affected physical resources. If we understand this phenomenon in the print world, we can design ameliorations for the digital world.