360 resultados para Cisteino peptidase


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two areas of particular importance in prostate cancer progression are primary tumour development and metastasis. These processes involve a number of physiological events, the mediators of which are still being discovered and characterised. Serine proteases have been shown to play a major role in cancer invasion and metastasis. The recently discovered phenomenon of their activation of a receptor family known as the protease activated receptors (PARs) has extended their physiological role to that of signaling molecule. Several serine proteases are expressed by malignant prostate cancer cells, including members of the kallikreinrelated peptidase (KLK) serine protease family, and increasingly these are being shown to be associated with prostate cancer progression. KLK4 is highly expressed in the prostate and expression levels increase during prostate cancer progression. Critically, recent studies have implicated KLK4 in processes associated with cancer. For example, the ectopic over-expression of KLK4 in prostate cancer cell lines results in an increased ability of these cells to form colonies, proliferate and migrate. In addition, it has been demonstrated that KLK4 is a potential mediator of cellular interactions between prostate cancer cells and osteoblasts (bone forming cells). The ability of KLK4 to influence cellular behaviour is believed to be through the selective cleavage of specific substrates. Identification of relevant in vivo substrates of KLK4 is critical to understanding the pathophysiological roles of this enzyme. Significantly, recent reports have demonstrated that several members of the KLK family are able to activate PARs. The PARs are relatively new members of the seven transmembrane domain containing G protein coupled receptor (GPCR) family. PARs are activated through proteolytic cleavage of their N-terminus by serine proteases, the resulting nascent N-terminal binds intramolecularly to initiate receptor activation. PARs are involved in a number of patho-physiological processes, including vascular repair and inflammation, and a growing body of evidence suggests roles in cancer. While expression of PAR family members has been documented in several types of cancers, including prostate, the role of these GPCRs in prostate cancer development and progression is yet to be examined. Interestingly, several studies have suggested potential roles in cellular invasion through the induction of cytoskeletal reorganisation and expression of basement membrane-degrading enzymes. Accordingly, this program of research focussed on the activation of the PARs by the prostate cancer associated enzyme KLK4, cellular processing of activated PARs and the expression pattern of receptor and agonist in prostate cancer. For these studies KLK4 was purified from the conditioned media of stably transfected Sf9 insect cells expressing a construct containing the complete human KLK4 coding sequence in frame with a V5 epitope and poly-histidine encoding sequences. The first aspect of this study was the further characterisation of this recombinant zymogen form of KLK4. The recombinant KLK4 zymogen was demonstrated to be activatable by the metalloendopeptidase thermolysin and amino terminal sequencing indicated that thermolysin activated KLK4 had the predicted N-terminus of mature active KLK4 (31IINED). Critically, removal of the pro-region successfully generated a catalytically active enzyme, with comparable activity to a previously published recombinant KLK4 produced from S2 insect cells. The second aspect of this study was the activation of the PARs by KLK4 and the initiation of signal transduction. This study demonstrated that KLK4 can activate PAR-1 and PAR-2 to mobilise intracellular Ca2+, but failed to activate PAR-4. Further, KLK4 activated PAR-1 and PAR-2 over distinct concentration ranges, with KLK4 activation and mobilisation of Ca2+ demonstrating higher efficacy through PAR-2. Thus, the remainder of this study focussed on PAR-2. KLK4 was demonstrated to directly cleave a synthetic peptide that mimicked the PAR-2 Nterminal activation sequence. Further, KLK4 mediated Ca2+ mobilisation through PAR-2 was accompanied by the initiation of the extra-cellular regulated kinase (ERK) cascade. The specificity of intracellular signaling mediated through PAR-2 by KLK4 activation was demonstrated by siRNA mediated protein depletion, with a reduction in PAR-2 protein levels correlating to a reduction in KLK4 mediated Ca2+mobilisation and ERK phosphorylation. The third aspect of this study examined cellular processing of KLK4 activated PAR- 2 in a prostate cancer cell line. PAR-2 was demonstrated to be expressed by five prostate derived cell lines including the prostate cancer cell line PC-3. It was also demonstrated by flow cytometry and confocal microscopy analyses that activation of PC-3 cell surface PAR-2 by KLK4 leads to internalisation of this receptor in a time dependent manner. Critically, in vivo relevance of the interaction between KLK4 and PAR-2 was established by the observation of the co-expression of receptor and agonist in primary prostate cancer and prostate cancer bone lesion samples by immunohistochemical analysis. Based on the results of this study a number of exciting future studies have been proposed, including, delineating differences in KLK4 cellular signaling via PAR-1 and PAR-2 and the role of PAR-1 and PAR-2 activation by KLK4 in prostate cancer cells and bone cells in prostate cancer progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An array of substrates link the tryptic serine protease, kallikrein-related peptidase 14 (KLK14), to physiological functions including desquamation and activation of signaling molecules associated with inflammation and cancer. Recognition of protease cleavage sequences is driven by complementarity between exposed substrate motifs and the physicochemical signature of an enzyme's active site cleft. However, conventional substrate screening methods have generated conflicting subsite profiles for KLK14. This study utilizes a recently developed screening technique, the sparse matrix library, to identify five novel high-efficiency sequences for KLK14. The optimal sequence, YASR, was cleaved with higher efficiency (k(cat)/K(m)=3.81 ± 0.4 × 10(6) M(-1) s(-1)) than favored substrates from positional scanning and phage display by 2- and 10-fold, respectively. Binding site cooperativity was prominent among preferred sequences, which enabled optimal interaction at all subsites as indicated by predictive modeling of KLK14/substrate complexes. These simulations constitute the first molecular dynamics analysis of KLK14 and offer a structural rationale for the divergent subsite preferences evident between KLK14 and closely related KLKs, KLK4 and KLK5. Collectively, these findings highlight the importance of binding site cooperativity in protease substrate recognition, which has implications for discovery of optimal substrates and engineering highly effective protease inhibitors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The third edition of the Handbook of Proteolytic Enzymes aims to be a comprehensive reference work for the enzymes that cleave proteins and peptides, and contains over 800 chapters. Each chapter is organized into sections describing the name and history, activity and specificity, structural chemistry, preparation, biological aspects, and distinguishing features for a specific peptidase. The subject of Chapter 619 is Kallikrein-related Peptidase 15 (Prostinogen).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human kallikrein-related peptidases are a subgroup of trypsin and chymotrypsin-like serine peptidases that are characterized by their homology to tissue kallikrein or kallikrein 1 (KLK1) encoded by the KLK1 gene (reviewed in[1-4]). The human KLK locus spans an approximately 320 kb region on chromosome 19q13.3-13.4 and contains fifteen genes encoding KLK1 and fourteen other kallikrein-related peptidases, KLK2-KLK15, which have been named contiguously in the locus in the order of their discovery [5-8] (Figure 606.1). It is the largest contiguous cluster of serine protease encoding genes in the human genome which has evolved from gene duplication of KLK1 and then subsequent reduplication of the newly evolved KLK genes [2]. The high conservation noted for KLK1-KLK3 (62-77%) reflects the proposed duplication of the KLK1 gene that produced the KLK2 gene which further generated the KLK3 gene. In contrast, the newer KLK4-KLK15 proteases share much less similarity, from 24-66%, although strong homology between KLK4 and KLK5, KLK9 and KLK11, and KLK10 and KLK12 suggests these genes are duplications of each other [2]...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High tumor kallikrein-related-peptidase 4 (KLK4) levels are associated with a poor outcome for women with serous epithelial ovarian cancer (EOC), for which peritoneal dissemination and chemoresistance are key events. To determine the role of KLK4 in these events, we examined KLK4-transfected SKOV-3 and endogenous KLK4 expressing OVCA432 cells in 3-dimensional (3D) suspension culture to mimic the ascites microenvironment. KLK4-SKOV-3 cells formed multicellular aggregates (MCAs) as seen in ascites, as did SKOV-3 cells treated with active KLK4. MCA formation was reduced by treatment with a KLK4 blocking antibody or the selective active site KLK4 sunflower trypsin inhibitor (SFTI-FCQR). KLK4-MCAs formed larger cancer cell foci in mesothelial cell monolayers than those formed by vector and native SKOV-3 cells, suggesting KLK4-MCAs are highly invasive in the peritoneal microenvironment. A high level of KLK4 is expressed by ascitic EOC cells compared to matched primary tumor cells, further supporting its role in the ascitic microenvironment. Interestingly, KLK4 transfected SKOV-3 cells expressed high levels of the KLK4 substrate, urokinase plasminogen activator (uPA), particularly in 3D-suspension, and high levels of both KLK4 and uPA were observed in patient cells taken from ascites. Importantly, the KLK4-MCAs were paclitaxel resistant which was reversed by SFTI-FCQR and to a lesser degree by the general serine protease inhibitor, Aprotinin, suggesting that in addition to uPA, other as yet unidentified substrates of KLK4 must be involved. Nonetheless, these data suggest that KLK4 inhibition, in conjunction with paclitaxel, may improve the outcome for women with serous epithelial ovarian cancer and high KLK4 levels in their tumors.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We assessed whether alternative transcripts (using KLK2, KLK3 and KLK4 as models) are differentially regulated by androgens and anti-androgens as an indicator of prostate cancers as they acquire treatment resistance. Using RNAseq of LNCaP cells treated with dihydrotestosterone, bicalutamide and enzalutamide, we show that the expression of variant KLK transcripts is markedly different to other variant transcripts at those loci. We also reveal that KLK variants are also over 2-fold more highly expressed in prostate cancers compared to their corresponding normal prostate. We propose that androgens and anti-androgens can activate specific variant transcripts of critical prostate cancer genes during treatment resistance

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cancer-associated proteases promote peritoneal dissemination and chemoresistance in malignant progression. In this study, kallikrein-related peptidases 4, 5, 6, and 7 (KLK4-7)-cotransfected OV-MZ-6 ovarian cancer cells were embedded in a bioengineered three-dimensional (3D) microenvironment that contains RGD motifs for integrin engagement to analyze their spheroid growth and survival after chemotreatment. KLK4-7-cotransfected cells formed larger spheroids and proliferated more than controls in 3D, particularly within RGD-functionalized matrices, which was reduced upon integrin inhibition. In contrast, KLK4-7-expressing cell monolayers proliferated less than controls, emphasizing the relevance of the 3D microenvironment and integrin engagement. In a spheroid-based animal model, KLK4-7-overexpression induced tumor growth after 4 weeks and intraperitoneal spread after 8 weeks. Upon paclitaxel administration, KLK4-7-expressing tumors declined in size by 91% (controls: 87%) and showed 90% less metastatic outgrowth (controls: 33%, P<0.001). KLK4-7-expressing spheroids showed 53% survival upon paclitaxel treatment (controls: 51%), accompanied by enhanced chemoresistance-related factors, and their survival was further reduced by combination treatment of paclitaxel with KLK4/5/7 (22%, P=0.007) or MAPK (6%, P=0.006) inhibition. The concomitant presence of KLK4-7 in ovarian cancer cells together with integrin activation drives spheroid formation and proliferation. Combinatorial approaches of paclitaxel and KLK/MAPK inhibition may be more efficient for late-stage disease than chemotherapeutics alone as these inhibitory regimens reduced cancer spheroid growth to a greater extent than paclitaxel alone.