727 resultados para Circumstellar disks


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The majority of young, low-mass stars are surrounded by optically thick accretion disks. These circumstellar disks provide large reservoirs of gas and dust that will eventually be transformed into planetary systems. Theory and observations suggest that the earliest stage toward planet formation in a protoplanetary disk is the growth of particles, from sub-micron-sized grains to centimeter- sized pebbles. Theory indicates that small interstellar grains are well coupled into the gas and are incorporated to the disk during the proto-stellar collapse. These dust particles settle toward the disk mid-plane and simultaneously grow through collisional coagulation in a very short timescale. Observationally, grain growth can be inferred by measuring the spectral energy distribution at long wavelengths, which traces the continuum dust emission spectrum and hence the dust opacity. Several observational studies have indicated that the dust component in protoplanetary disks has evolved as compared to interstellar medium dust particles, suggesting at least 4 orders of magnitude in particle- size growth. However, the limited angular resolution and poor sensitivity of previous observations has not allowed for further exploration of this astrophysical process.

As part of my thesis, I embarked in an observational program to search for evidence of radial variations in the dust properties across a protoplanetary disk, which may be indicative of grain growth. By making use of high angular resolution observations obtained with CARMA, VLA, and SMA, I searched for radial variations in the dust opacity inside protoplanetary disks. These observations span more than an order of magnitude in wavelength (from sub-millimeter to centimeter wavelengths) and attain spatial resolutions down to 20 AU. I characterized the radial distribution of the circumstellar material and constrained radial variations of the dust opacity spectral index, which may originate from particle growth in these circumstellar disks. Furthermore, I compared these observational constraints with simple physical models of grain evolution that include collisional coagulation, fragmentation, and the interaction of these grains with the gaseous disk (the radial drift problem). For the parameters explored, these observational constraints are in agreement with a population of grains limited in size by radial drift. Finally, I also discuss future endeavors with forthcoming ALMA observations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Context. Protoplanetary disks are vital objects in star and planet formation, possessing all the material, gas and dust, which may form a planetary system orbiting the new star. Small, simple molecules have traditionally been detected in protoplanetary disks; however, in the ALMA era, we expect the molecular inventory of protoplanetary disks to significantly increase.

Aims. We investigate the synthesis of complex organic molecules (COMs) in protoplanetary disks to put constraints on the achievable chemical complexity and to predict species and transitions which may be observable with ALMA.

Methods. We have coupled a 2D steady-state physical model of a protoplanetary disk around a typical T Tauri star with a large gas-grain chemical network including COMs. We compare the resulting column densities with those derived from observations and perform ray-tracing calculations to predict line spectra. We compare the synthesised line intensities with current observations and determine those COMs which may be observable in nearby objects. We also compare the predicted grain-surface abundances with those derived from cometary comae observations.

Results. We find COMs are efficiently formed in the disk midplane via grain-surface chemical reactions, reaching peak grain-surface fractional abundances similar to 10(-6)-10(-4) that of the H nuclei number density. COMs formed on grain surfaces are returned to the gas phase via non-thermal desorption; however, gas-phase species reach lower fractional abundances than their grain-surface equivalents, similar to 10(-12)-10(-7). Including the irradiation of grain mantle material helps build further complexity in the ice through the replenishment of grain-surface radicals which take part in further grain-surface reactions. There is reasonable agreement with several line transitions of H2CO observed towards T Tauri star-disk systems. There is poor agreement with HC3(N) lines observed towards LkCa 15 and GO Tau and we discuss possible explanations for these discrepancies. The synthesised line intensities for CH3OH are consistent with upper limits determined towards all sources. Our models suggest CH3OH should be readily observable in nearby protoplanetary disks with ALMA; however, detection of more complex species may prove challenging, even with ALMA "Full Science" capabilities. Our grain-surface abundances are consistent with those derived from cometary comae observations providing additional evidence for the hypothesis that comets (and other planetesimals) formed via the coagulation of icy grains in the Sun's natal disk.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Be stars possess gaseous circumstellar disks that modify in many ways the spectrum of the central B star. Furthermore, they exhibit variability at several timescales and for a large number of observables. Putting the pieces together of this dynamical behavior is not an easy task and requires a detailed understanding of the physical processes that control the temporal evolution of the observables. There is an increasing body of evidence that suggests that Be disks are well described by standard alpha-disk theory. This paper is the first of a series that aims at studying the possibility of inferring several disk and stellar parameters through the follow-up of various observables. Here we study the temporal evolution of the disk density for different dynamical scenarios, including the disk buildup as a result of a long and steady mass injection from the star, the disk dissipation that occurs after mass injection is turned off, as well as scenarios in which active periods are followed by periods of quiescence. For those scenarios, we investigate the temporal evolution of continuum photometric observables using a three-dimensional non-LTE radiative transfer code. We show that light curves for different wavelengths are specific of a mass loss history, inclination angle, and alpha viscosity parameter. The diagnostic potential of those light curves is also discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The emission from young stellar objects (YSOs) in the mid-infrared (mid-IR) is dominated by the inner rim of their circumstellar disks. We present IR data from the Young Stellar Object VARiability (YSOVAR) survey of ~800 objects in the direction of the Lynds 1688 (L1688) star-forming region over four visibility windows spanning 1.6 yr using the Spitzer Space Telescope in its warm mission phase. Among all light curves, 57 sources are cluster members identified based on their spectral energy distribution and X-ray emission. Almost all cluster members show significant variability. The amplitude of the variability is larger in more embedded YSOs. Ten out of 57 cluster members have periodic variations in the light curves with periods typically between three and seven days, but even for those sources, significant variability in addition to the periodic signal can be seen. No period is stable over 1.6 yr. Nonperiodic light curves often still show a preferred timescale of variability that is longer for more embedded sources. About half of all sources exhibit redder colors in a fainter state. This is compatible with time-variable absorption toward the YSO. The other half becomes bluer when fainter. These colors can only be explained with significant changes in the structure of the inner disk. No relation between mid-IR variability and stellar effective temperature or X-ray spectrum is found.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A detailed study was performed for a sample of low-mass pre-main-sequence (PMS) stars, previously identified as weak-line T Tauri stars, which are compared to members of the Tucanae and Horologium Associations. Aiming to verify if there is any pattern of abundances when comparing the young stars at different phases, we selected objects in the range from 1 to 100 Myr, which covers most of PMS evolution. High-resolution optical spectra were acquired at European Southern Observatory and Observatorio do Pico dos Dias. The stellar fundamental parameters effective temperature and gravity were calculated by excitation and ionization equilibria of iron absorption lines. Chemical abundances were obtained via equivalent width calculations and spectral synthesis for 44 per cent of the sample, which shows metallicities within 0.5 dex solar. A classification was developed based on equivalent width of Li I 6708 angstrom and Ha lines and spectral types of the studied stars. This classification allowed a separation of the sample into categories that correspond to different evolutive stages in the PMS. The position of these stars in the Hertzsprung-Russell diagram was also inspected in order to estimate their ages and masses. Among the studied objects, it was verified that our sample actually contains seven weak-line T Tauri stars, three are Classical T Tauri, 12 are Fe/Ge PMS stars and 21 are post-T Tauri or young main-sequence stars. An estimation of circumstellar luminosity was obtained using a disc model to reproduce the observed spectral energy distribution. Most of the stars show low levels of circumstellar emission, corresponding to less than 30 per cent of the total emission.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La présence de disques circumstellaires signale la formation actuelle ou passée de systèmes planétaires, pour lesquels les processus de formation sont encore mal compris. Ce mémoire porte sur la détection et la caractérisation de disques circumstellaires autour d’étoiles de faibles masses (types spectraux > K5) et de naines brunes qui sont candidates ou membres d’associations cinématiques jeunes. Nous présentons ici les résultats de cette recherche ainsi que son implication pour la compréhension des processus de formation et d’évolution des systèmes planétaires. De l’échantillon initial composé de ∼ 1600 objets provenant des relevés BANYAN de Malo et al. ainsi que Gagné et al., dont seulement 600 satisfont nos critères de qualité sur les données, quatre nouveaux candidats de disque ont été découverts en détectant leur excès d’émission infrarouge dans les données d’archive de la mission WISE. Les données du relevé 2MASS ainsi que les spectres synthétiques BT-Settl ont été conjointement utilisés pour modéliser l’émission des étoiles. Les nouveaux candidats, dont les types spectraux sont tardifs (M4.5 à L0) et les masses se situent entre ∼ 13 et 120 M_Jup, ont des températures de disque de ∼ 135–520 K et des luminosités fractionnaires de 0,021–0,15. Pour deux des cibles, nous avons obtenu des spectres dans les longueurs d’onde visibles et infrarouges proches. Ces nouveaux spectres montrent respectivement des signes d’émission en Hα et Paβ, indiquant la présence d’accrétion, et ainsi de gaz, et renforçant l’hypothèse que ces objets sont réellement jeunes. Ces deux objets, vraisemblablement âgés de 40 Ma, pourraient représenter la première détection et caractérisation de disques porteurs de gaz plus vieux que 20 Ma.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La présence de disques circumstellaires signale la formation actuelle ou passée de systèmes planétaires, pour lesquels les processus de formation sont encore mal compris. Ce mémoire porte sur la détection et la caractérisation de disques circumstellaires autour d’étoiles de faibles masses (types spectraux > K5) et de naines brunes qui sont candidates ou membres d’associations cinématiques jeunes. Nous présentons ici les résultats de cette recherche ainsi que son implication pour la compréhension des processus de formation et d’évolution des systèmes planétaires. De l’échantillon initial composé de ∼ 1600 objets provenant des relevés BANYAN de Malo et al. ainsi que Gagné et al., dont seulement 600 satisfont nos critères de qualité sur les données, quatre nouveaux candidats de disque ont été découverts en détectant leur excès d’émission infrarouge dans les données d’archive de la mission WISE. Les données du relevé 2MASS ainsi que les spectres synthétiques BT-Settl ont été conjointement utilisés pour modéliser l’émission des étoiles. Les nouveaux candidats, dont les types spectraux sont tardifs (M4.5 à L0) et les masses se situent entre ∼ 13 et 120 M_Jup, ont des températures de disque de ∼ 135–520 K et des luminosités fractionnaires de 0,021–0,15. Pour deux des cibles, nous avons obtenu des spectres dans les longueurs d’onde visibles et infrarouges proches. Ces nouveaux spectres montrent respectivement des signes d’émission en Hα et Paβ, indiquant la présence d’accrétion, et ainsi de gaz, et renforçant l’hypothèse que ces objets sont réellement jeunes. Ces deux objets, vraisemblablement âgés de 40 Ma, pourraient représenter la première détection et caractérisation de disques porteurs de gaz plus vieux que 20 Ma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We discuss the basic hydrodynamics that determines the density structure of the disks around hot stars. Observational evidence supports the idea that these disks are Keplerian (rotationally supported) gaseous disks. A popular scenario in the literature, which naturally leads to the formation of Keplerian disks, is the viscous decretion model. According to this scenario, the disks are hydrostatically supported in the vertical direction, while the radial structure is governed by the viscous transport. This suggests that the temperature is one primary factor that governs the disk density structure. In a previous study we demonstrated, using three-dimensional non-LTE Monte Carlo simulations, that viscous Keplerian disks can be highly nonisothermal. In this paper we build on our previous work and solve the full problem of the steady state nonisothermal viscous diffusion and vertical hydrostatic equilibrium. We find that the self-consistent solution departs significantly from the analytic isothermal density, with potentially large effects on the emergent spectrum. This implies that nonisothermal disk models must be used for a detailed modeling of Be star disks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Be stars possess gaseous circumstellar decretion disks, which are well described using standard alpha-disk theory. The Be star 28 CMa recently underwent a long outburst followed by a long period of quiescence, during which the disk dissipated. Here we present the first time-dependent models of the dissipation of a viscous decretion disk. By modeling the rate of decline of the V-band excess, we determine that the viscosity parameter alpha = 1.0 +/- 0.2, corresponding to a mass injection rate (M) over dot = (3.5 +/- 1.3) x 10(-8) M-circle dot yr(-1). Such a large value of a suggests that the origin of the turbulent viscosity is an instability in the disk whose growth is limited by shock dissipation. The mass injection rate is more than an order of magnitude larger than the wind mass-loss rate inferred from UV observations, implying that the mass injection mechanism most likely is not the stellar wind, but some other mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Be stars are known to be fast rotators. At high rotation rates a profound modification of the radiation field reaching the circumstellar environment is expected. The origin of this modification is the decrease of the effective gravity on stellar surface leading to the stellar geometrical flattening and the gravity darkening effect predicted by Von Zeipel. Making use of the radiative transfer code HDUST we discuss the consequences of such stellar rotation on the structure of Be star disks based on the Viscous Decretion Disk model. Observational predictions are also made, as SED, IR-excess and Hydrogen line profiles. The modified illumination of the circumstellar disk generates significant changes in these quantities. Ascertaining these changes is useful to set some of the fundamental parameters of the Be system and to unveil the role of stellar rotation over the stellar evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study is made on the flow and heat transfer of a viscous fluid confined between two parallel disks. The disks are allowed to rotate with different time dependent angular velocities, and the upper disk is made to approach the lower one with a constant speed. Numerical solutions of the governing parabolic partial differential equations are obtained through a fourth-order accurate compact finite difference scheme. The normal forces and torques that the fluid exerts on the rotating surfaces are obtained at different nondimensional times for different values of the rate of squeezing and disk angular velocities. The temperature distribution and heat transfer are also investigated in the present analysis.