998 resultados para Circular Protein
Resumo:
Cyclotides are a recently discovered family of disulfide rich proteins from plants that contain a circular protein backbone. They are exceptionally stable, as exemplified by their use in native medicine of the prototypic cyclotide kalata B1. The peptide retains uterotonic activity after the plant from which it is derived is boiled to make a medicinal tea. The circular backbone is thought to be in part responsible for the stability of the cyclotides, and to investigate its role in determining structure and biological activity, an acyclic derivative, des-(24-28)-kalata B1, was chemically synthesized and purified. This derivative has five residues removed from the 29-amino acid circular backbone of kalata B1 in a loop region corresponding to a processing site in the biosynthetic precursor protein. Two-dimensional NMR spectra of the peptide were recorded, assigned, and used to identify a series of distance, angle, and hydrogen bonding restraints. These were in turn used to determine a representative family of solution structures. Of particular interest was a determination of the structural similarities and differences between des-(2428)-kalata B1 and native kalata B1. Although the overall three-dimensional fold remains very similar to that of the native circular protein, removal of residues 24-28 of kalata B1 causes disruption of some structural features that are important to the overall stability. Furthermore, loss of hemolytic activity is associated with backbone truncation and linearization.
Resumo:
The cyclotides are a family of head-to-tail cyclized peptides that display exceptionally high stability and a range of biological activities. Acyclic permutants that contain a break in the circular backbone have been reported to be devoid of the haemolytic activity of the prototypic cyclotide kalata B1, but the potential role of the charges at the introduced termini in this loss of membraneolytic activity has not been fully determined. In this study, acyclic permutants of kalata B1 with capped N- and G termini were synthesized and found to adopt a native fold. These variants were observed to cause no measurable lysis of erythrocytes, strengthening the connection between backbone cyclization and haemolytic activity. (C) 2004 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
Resumo:
The traditional idea of proteins as linear chains of amino acids is being challenged with the discovery of miniproteins that contain a circular backbone. The cyclotide family is the largest group of circular proteins and is characterized by an amide-circularized protein backbone and six conserved cysteine residues. These conserved cysteines are paired to form a knotted network of disulfide bonds. The combination of the circular backbone and a cystine knot, known as the cyclic cystine knot (CCK) motif, confers exceptional stability upon the cyclotides. This review discusses the role of the circular backbone based on studies of both the oxidative folding of kalata B1, the prototypical cyclotide, and a comparison of the structure and activity of kalata B1 and its acyclic permutants.
Resumo:
Cyclotides are a family of plant proteins that have the unusual combination of head-to-tail backbone cyclization and a cystine knot motif. They are exceptionally stable and show resistance to most chemical, physical, and enzymatic treatments. The structure of tricyclon A, a previously unreported cyclotide, is described here. In this structure, a loop that is disordered in other cyclotides forms a beta sheet that protrudes from the globular core. This study indicates that the cyclotide fold is amenable to the introduction of a range of structural elements without affecting the cystine knot core of the protein, which is essential for the stability of the cyclotides. Tricyclon A does not possess a hydrophobic patch, typical of other cyclotides, and has minimal hemolytic activity, making it suitable for pharmaceutical applications. The 22 kDa precursor protein of tricyclon A was identified and provides clues to the processing of these fascinating miniproteins.
Resumo:
A large number of macrocyclic miniproteins with diverse biological activities have been isolated from the Rubiaceae, Violaceae, and Cucurbitaceae plant families in recent years. Here we report the three-dimensional structure determined using H-1 NMR spectroscopy and demonstrate potent insecticidal activity for one of these peptides, kalata B2. This peptide is one of the major components of an extract from the leaves of the plant Oldenlandia affinis. The structure consists of a distorted triple-stranded beta-sheet and a cystine knot arrangement of the disulfide bonds and is similar to those described for other members of the cyclotide family. The unique cyclic and knotted nature of these molecules makes them a fascinating example of topologically complex proteins. Examination of the sequences reveals that they can be separated into two subfamilies, one of which contains a larger number of positively charged residues and has a bracelet-like circularization of the backbone. The second subfamily contains a backbone twist due to a cis-peptidyl-proline bond and may conceptually be regarded as a molecular Mobius strip. Kalata B2 is the second putative member of the Mobius cyclotide family to be structurally characterized and has a cis-peptidyl-proline bond, thus validating the suggested name for this subfamily of cyclotides. The observation that kalata B2 inhibits the growth and development of Helicoverpa armigera larvae suggests a role for the cyclotides in plant defense. A comparison of the sequences and structures of kalata B1 and B2 provides insight into the biological activity of these peptides.
Resumo:
The cyclotides are a family of circular proteins with a range of biological activities and potential pharmaceutical and agricultural applications. The biosynthetic mechanism of cyclization is unknown and the discovery of novel sequences may assist in achieving this goal. In the present study, we have isolated a new cyclotide from Oldenlandia affinis, kalata B8, which appears to be a hybrid of the two major subfamilies (Mobius and bracelet) of currently known cyclotides. We have determined the three-dimensional structure of kalata B8 and observed broadening of resonances directly involved in the cystine knot motif, suggesting flexibility in this region despite it being the core structural element of the cyclotides. The cystine knot motif is widespread throughout Nature and inherently stable, making this apparent flexibility a surprising result. Further-more, there appears to be isomerization of the peptide backbone at an Asp-Gly sequence in the region involved in the cyclization process. Interestingly, such isomerization has been previously characterized in related cyclic knottins from Momordica cochinchinensis that have no sequence similarity to kalata B8 apart from the six conserved cysteine residues and may result from a common mechanism of cyclization. Kalata B8 also provides insight into the structure-activity relationships of cyclotides as it displays anti-HIV activity but lacks haemolytic activity. The 'uncoupling' of these two activities has not previously been observed for the cyclotides and may be related to the unusual hydrophilic nature of the peptide.
Resumo:
Kalata B1 is a prototypic member of the unique cyclotide family of macrocyclic polypeptides in which the major structural features are a circular peptide backbone, a triple stranded beta-sheet, and a cystine knot arrangement of three disulfide bonds. The cyclotides are the only naturally occurring family of circular proteins and have prompted us to explore the concept of acyclic permutation, i.e. opening the backbone of a cross-linked circular protein in topologically permuted ways. We have synthesized the complete suite of acyclic permutants of kalata B1 and examined the effect of acyclic permutation on structure and activity. Only two of six topologically distinct backbone loops are critical for folding into the native conformation, and these involve disruption of the embedded ring in the cystine knot. Surprisingly, it is possible to disrupt regions of the p-sheet and still allow folding into native-like structure, provided the cystine knot is intact. Kalata B1 has mild hemolytic activity, but despite the overall structure of the native peptide being retained in all but two cases, none of the acyclic permutants displayed hemolytic activity. This loss of activity is not localized to one particular region and suggests that cyclization is critical for hemolytic activity.
Resumo:
In recent years an increasing number of miniproteins containing an amide-cyclized backbone have been discovered. The cyclotide family is the largest group of such proteins and is characterized by a circular protein backbone and six conserved cysteine residues linked by disulfide bonds in a tight core of the molecule. These form a cystine knot in which an embedded ring formed by two of the disulfide bonds and the connecting backbone segment is threaded by a third disulfide bond. In the current study we have undertaken high resolution structural analysis of two prototypic cyclotides, kalata B1 and cycloviolacin O1, to define the role of the conserved residues in the sequence. We provide the first comprehensive analysis of the topological features in this unique family of proteins, namely rings (a circular backbone), twists (a cis-peptide bond in the Mobius cyclotides) and knots (a knotted arrangement of the disulfide bonds).
Resumo:
The cyclotides are a family of disulfide-rich proteins from plants. They have the characteristic structural features of a circular protein backbone and a knotted arrangement of disulfide bonds. Structural and biochemical studies of the cyclotides suggest that their unique physiological stability can be loaned to bioactive peptide fragments for pharmaceutical and agricultural development. In particular, the cyclotides incorporate a number of solvent-exposed loops that are potentially suitable for epitope grafting applications. Here, we determine the structure of the largest known cyclotide, palicourein, which has an atypical size and composition within one of the surface-exposed loops. The structural data show that an increase in size of a palicourein loop does not perturb the core fold, to which the thermodynamic and chemical stability has been attributed. The cyclotide core fold, thus, can in principle be used as a framework for the development of useful pharmaceutical and agricultural bioactivities.
Resumo:
The plant cyclotides, the largest known family of circular proteins, have tightly folded structures and a range of biological activities that lend themselves to potential pharmaceutical and agricultural applications. Based on sequence homology, they are classified into the bracelet and Mobius subfamilies. The bracelet subfamily has previously been shown to display anti-HIV activity. We show here that a member of the Mobius subfamily, kalata B1, also exhibits anti-HIV activity despite extensive sequence differences between the subfamilies. In addition, acyclic permutants of kalata B1 displayed no anti-HIV activity, suggesting that this activity is critically dependent on an intact circular backbone. (C) 2004 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
Cycloviolacin H4, a new macrocyclic miniprotein comprising 30 amino acid residues, was isolated from the underground parts of the Australian native violet Viola hederaceae. Its sequence, cyclo-(CAESCVWIPCTVTALLGCSCSNNVCYNGIP), was determined by nanospray tandem mass spectrometry and quantitative amino acid analysis. A knotted disuffide arrangement, which was designated as a cyclic cystine knot motif and characteristic to all known cyclotides, is proposed for stabilizing the molecular structure and folding. The cyclotide is classified in the bracelet subfamily of cyclotides due to the absence of a cis-Pro peptide bond in the circular peptide backbone. A model of its three-dimensional structure was derived based on the template of the homologous cyclotide vhr1 (Trabi et al. Plant Cell 2004, 16, 2204-2216). Cycloviolacin H4 exhibits the most potent hemolytic activity in cyclotides reported so far, and this activity correlates with the size of a surface-exposed hydrophobic patch. This work has thus provided insight into the factors that modulate the cytotoxic properties of cyclotides.
Resumo:
The cyclotide family of plant proteins is of interest because of their unique topology, which combines a head-to-tail cyclic backbone with an embedded cystine knot, and because their-remarkable chemical and biological properties make them ideal candidates as grafting templates for biologically active peptide epitopes. The present Study describes the first steps towards exploiting the cyclotide framework by synthesizing and structurally characterizing two grafted analogues of the cyclotide kalata B1. The modified peptides have polar or charged residues substituted for residues that form part of a surface-exposed hydrophobic patch that plays a significant role in the folding and biological activity of kalata B1. Both analogues retain the native cyclotide fold, but lack the undesired haemolytic activity of their parent molecule, kalata B1. This finding confirms the tolerance of the cyclotide framework to residue Substitutions and opens up possibilities for the Substitution of biologically active peptide epitopes into the framework.
Resumo:
The applicability of linear peptides as drugs is potentially limited by their susceptibility to proteolytic cleavage and poor bioavailability. Cyclotides are macrocyclic cystine-knotted mini-proteins that have a broad range of bioactivities and are exceptionally stable, being resistant to chemical, thermal and enzymatic degradation. The general limitations of peptides as drugs can potentially be overcome by using the cyclotide framework as a scaffold onto which new activities may be engineered. The potential use of cyclotides and related peptide scaffolds for drug design is evaluated herein, with reference to increasing knowledge of the structures and sequence diversity of natural cyclotides and the emergence of new approaches in protein engineering.
Resumo:
A two-domain portion of the proteinase inhibitor precursor from Nicotiana alata (NaProPI) has been expressed and its structure determined by NMR spectroscopy. NaProPI contains six almost identical 53 amino acid repeats that fold into six highly similar domains; however, the sequence repeats do nut coincide with the structural domains. Five of the structural domains comprise the C-terminal portion of one repeat and the N-terminal portion of the next. The sixth domain contains the C-terminal portion of the sixth repeat and the N-terminal portion of the first repeat. Disulphide bonds link these C and N-terminal fragments to generate the clasped-bracelet fold of NaProPI. The three-dimensional structure of NaProPI is not known, but it is conceivable that adjacent domains in NaProPI interact to generate the circular bracelet with the N and C termini in close enough proximity to facilitate formation of the disulphide bonds that form the clasp The expressed protein, examined in the current study, comprises residues 25-135 of NaProPI and encompasses the first two contiguous structural domains, namely the chymotrypsin inhibitor C1 and the trypsin inhibitor T1, joined by a five-residue linker, and is referred to as C1-T1. The tertiary structure of each domain in C1-T1 is identical to that found in the isolated inhibitors. However, no nuclear Overhauser effect contacts are observed between the two domains and the five-residue linker adopts an extended conformation. The absence of interactions between the domains indicates that adjacent domains do not specifically interact to drive the circularisation of NaProPI. These results are in agreement with recent data which describe similar PI precursors from other members of the Solanaceae having two, three, or four repeats. The lack of strong interdomain association is likely to be important for the function of individual inhibitors by ensuring that there is no masking of reactive sites upon release from the precursor. (C) 2001 Academic Press.
Resumo:
Is the pathway of protein folding determined by the relative stability of folding intermediates, or by the relative height of the activation barriers leading to these intermediates? This is a fundamental question for resolving the Levinthal paradox, which stated that protein folding by a random search mechanism would require a time too long to be plausible. To answer this question, we have studied the guanidinium chloride (GdmCl)-induced folding/unfolding of staphylococcal nuclease [(SNase, formerly EC 3.1.4.7; now called microbial nuclease or endonuclease, EC 3.1.31.1] by stopped-flow circular dichroism (CD) and differential scanning microcalorimetry (DSC). The data show that while the equilibrium transition is a quasi-two-state process, kinetics in the 2-ms to 500-s time range are triphasic. Data support the sequential mechanism for SNase folding: U3 <--> U2 <--> U1 <--> N0, where U1, U2, and U3 are substates of the unfolded protein and N0 is the native state. Analysis of the relative population of the U1, U2, and U3 species in 2.0 M GdmCl gives delta-G values for the U3 --> U2 reaction of +0.1 kcal/mol and for the U2 --> U1 reaction of -0.49 kcal/mol. The delta-G value for the U1 --> N0 reaction is calculated to be -4.5 kcal/mol from DSC data. The activation energy, enthalpy, and entropy for each kinetic step are also determined. These results allow us to make the following four conclusions. (i) Although the U1, U2, and U3 states are nearly isoenergetic, no random walk occurs among them during the folding. The pathway of folding is unique and sequential. In other words, the relative stability of the folding intermediates does not dictate the folding pathway. Instead, the folding is a descent toward the global free-energy minimum of the native state via the least activation path in the vast energy landscape. Barrier avoidance leads the way, and barrier height limits the rate. Thus, the Levinthal paradox is not applicable to the protein-folding problem. (ii) The main folding reaction (U1 --> N0), in which the peptide chain acquires most of its free energy (via van der Waals' contacts, hydrogen bonding, and electrostatic interactions), is a highly concerted process. These energy-acquiring events take place in a single kinetic phase. (iii) U1 appears to be a compact unfolded species; the rate of conversion of U2 to U1 depends on the viscosity of solution. (iv) All four relaxation times reported here depend on GdmCl concentrations: it is likely that none involve the cis/trans isomerization of prolines. Finally, a mechanism is presented in which formation of sheet-like chain conformations and a hydrophobic condensation event precede the main-chain folding reaction.