964 resultados para Circuits neuronaux


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pour la plupart des gens, la lecture est une activité automatique, inhérente à leur vie quotidienne et ne demandant que peu d’effort. Chez les individus souffrant d’épilepsie réflexe à la lecture, le simple fait de lire déclenche des crises épileptiques et les personnes doivent alors renoncer à la lecture. Les facteurs responsables du déclenchement de l’activité épileptique dans l’épilepsie réflexe à la lecture demeurent encore mal définis. Certains auteurs suggèrent que le nombre ainsi que la localisation des pointes épileptiques seraient en lien avec la voie de lecture impliquée. Des études en imagerie cérébrale, menées auprès de populations sans trouble neurologique, ont dévoilé que la lecture active un réseau étendu incluant les cortex frontaux, temporo-pariétaux et occipito-temporaux bilatéralement avec des différences dans les patrons d’activation pour les voies de lecture lexicale et phonologique. La majorité des études ont eu recours à des tâches de lecture silencieuse qui ne permettent pas d'évaluer la performance des participants. Dans la première étude de cette thèse, qui porte sur une étude de cas d'un patient avec épilepsie réflexe à la lecture, nous avons déterminé les tâches langagières et les caractéristiques des stimuli qui influencent l'activité épileptique. Les résultats ont confirmé que la lecture était la principale tâche responsable du déclenchement de l’activité épileptique chez ce patient. En particulier, la fréquence des pointes épileptiques était significativement plus élevée lorsque le patient avait recours au processus de conversion grapho-phonémique. Les enregistrements électroencéphalographiques (EEG) ont révélé que les pointes épileptiques étaient localisées dans le gyrus précentral gauche, indépendamment de la voie de lecture. La seconde étude avait comme objectif de valider un protocole de lecture à voix haute ayant recours à la spectroscopie près du spectre de l’infrarouge (SPIR) pour investiguer les circuits neuronaux qui sous-tendent la lecture chez les normo-lecteurs. Douze participants neurologiquement sains ont lu à voix haute des mots irréguliers et des non-mots lors d’enregistrements en SPIR. Les résultats ont montré que la lecture des deux types de stimuli impliquait des régions cérébrales bilatérales communes incluant le gyrus frontal inférieur, le gyrus prémoteur et moteur, le cortex somatosensoriel associatif, le gyrus temporal moyen et supérieur, le gyrus supramarginal, le gyrus angulaire et le cortex visuel. Les concentrations totales d’hémoglobine (HbT) dans les gyri frontaux inférieurs bilatéraux étaient plus élevées dans la lecture des non-mots que dans celle des mots irréguliers. Ce résultat suggère que le gyrus frontal inférieur joue un rôle dans la conversion grapho-phonémique, qui caractérise la voie de lecture phonologique. Cette étude a confirmé le potentiel de la SPIR pour l’investigation des corrélats neuronaux des deux voies de lecture. Une des retombées importantes de cette thèse consiste en l’utilisation du protocole de lecture en SPIR pour investiguer les troubles de la lecture. Ces investigations pourraient aider à mieux établir les liens entre le fonctionnement cérébral et la lecture dans les dyslexies développementales et acquises.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cette thèse a pour objectif de comparer les expressions émotionnelles évoquées par la musique, la voix (expressions non-linguistiques) et le visage sur les plans comportemental et neuronal. Plus précisément, le but est de bénéficier de l’indéniable pouvoir émotionnel de la musique afin de raffiner notre compréhension des théories et des modèles actuels associés au traitement émotionnel. Qui plus est, il est possible que cette disposition surprenante de la musique pour évoquer des émotions soit issue de sa capacité à s’immiscer dans les circuits neuronaux dédiés à la voix, bien que les évidences à cet effet demeurent éparses pour le moment. Une telle comparaison peut potentiellement permettre d’élucider, en partie, la nature des émotions musicales. Pour ce faire, différentes études ont été réalisées et sont ici présentées dans deux articles distincts. Les études présentées dans le premier article ont comparé, sur le plan comportemental, les effets d’expressions émotionnelles sur la mémoire entre les domaines musical et vocal (non-linguistique). Les résultats ont révélé un avantage systématique en mémoire pour la peur dans les deux domaines. Aussi, une corrélation dans la performance individuelle en mémoire a été trouvée entre les expressions de peur musicales et vocales. Ces résultats sont donc cohérents avec l’hypothèse d’un traitement perceptif similaire entre la musique et la voix. Dans le deuxième article, les corrélats neuronaux associés à la perception d’expressions émotionnelles évoquées par la musique, la voix et le visage ont été directement comparés en imagerie par résonnance magnétique fonctionnelle (IRMf). Une augmentation significative du signal « Blood Oxygen Level Dependent » (BOLD) a été trouvée dans l’amygdale (et à l’insula postérieure) en réponse à la peur, parmi l’ensemble des domaines et des modalités à l’étude. Une corrélation dans la réponse BOLD individuelle de l’amygdale, entre le traitement musical et vocal, a aussi été mise en évidence, suggérant à nouveau des similarités entre les deux domaines. En outre, des régions spécifiques à chaque domaine ont été relevées. Notamment, le gyrus fusiforme (FG/FFA) pour les expressions du visage, le sulcus temporal supérieur (STS) pour les expressions vocales ainsi qu’une portion antérieure du gyrus temporal supérieur (STG) particulièrement sensible aux expressions musicales (peur et joie), dont la réponse s’est avérée modulée par l’intensité des stimuli. Mis ensemble, ces résultats révèlent des similarités mais aussi des différences dans le traitement d’expressions émotionnelles véhiculées par les modalités visuelle et auditive, de même que différents domaines dans la modalité auditive (musique et voix). Plus particulièrement, il appert que les expressions musicales et vocales partagent d’étroites similarités surtout en ce qui a trait au traitement de la peur. Ces données s’ajoutent aux connaissances actuelles quant au pouvoir émotionnel de la musique et contribuent à élucider les mécanismes perceptuels sous-jacents au traitement des émotions musicales. Par conséquent, ces résultats donnent aussi un appui important à l’utilisation de la musique dans l’étude des émotions qui pourra éventuellement contribuer au développement de potentielles interventions auprès de populations psychiatriques.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A fundamental goal in neurobiology is to understand the development and organization of neural circuits that drive behavior. In the embryonic spinal cord, the first motor activity is a slow coiling of the trunk that is sensory-independent and therefore appears to be centrally driven. Embryos later become responsive to sensory stimuli and eventually locomote, behaviors that are shaped by the integration of central patterns and sensory feedback. In this thesis I used a simple vertebrate model, the zebrafish, to investigate in three manners how developing spinal networks control these earliest locomotor behaviors. For the first part of this thesis, I characterized the rapid transition of the spinal cord from a purely electrical circuit to a hybrid network that relies on both chemical and electrical synapses. Using genetics, lesions and pharmacology we identified a transient embryonic behavior preceding swimming, termed double coiling. I used electrophysiology to reveal that spinal motoneurons had glutamate-dependent activity patterns that correlated with double coiling as did a population of descending ipsilateral glutamatergic interneurons that also innervated motoneurons at this time. This work (Knogler et al., Journal of Neuroscience, 2014) suggests that double coiling is a discrete step in the transition of the motor network from an electrically coupled circuit that can only produce simple coils to a spinal network driven by descending chemical neurotransmission that can generate more complex behaviors. In the second part of my thesis, I studied how spinal networks filter sensory information during self-generated movement. In the zebrafish embryo, mechanosensitive sensory neurons fire in response to light touch and excite downstream commissural glutamatergic interneurons to produce a flexion response, but spontaneous coiling does not trigger this reflex. I performed electrophysiological recordings to show that these interneurons received glycinergic inputs during spontaneous fictive coiling that prevented them from firing action potentials. Glycinergic inhibition specifically of these interneurons and not other spinal neurons was due to the expression of a unique glycine receptor subtype that enhanced the inhibitory current. This work (Knogler & Drapeau, Frontiers in Neural Circuits, 2014) suggests that glycinergic signaling onto sensory interneurons acts as a corollary discharge signal for reflex inhibition during movement. v In the final part of my thesis I describe work begun during my masters and completed during my doctoral degree studying how homeostatic plasticity is expressed in vivo at central synapses following chronic changes in network activity. I performed whole-cell recordings from spinal motoneurons to show that excitatory synaptic strength scaled up in response to decreased network activity, in accordance with previous in vitro studies. At the network level, I showed that homeostatic plasticity mechanisms were not necessary to maintain the timing of spinal circuits driving behavior, which appeared to be hardwired in the developing zebrafish. This study (Knogler et al., Journal of Neuroscience, 2010) provided for the first time important in vivo results showing that synaptic patterning is less plastic than synaptic strength during development in the intact animal. In conclusion, the findings presented in this thesis contribute widely to our understanding of the neural circuits underlying simple motor behaviors in the vertebrate spinal cord.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Contexte La connectomique, ou la cartographie des connexions neuronales, est un champ de recherche des neurosciences évoluant rapidement, promettant des avancées majeures en ce qui concerne la compréhension du fonctionnement cérébral. La formation de circuits neuronaux en réponse à des stimuli environnementaux est une propriété émergente du cerveau. Cependant, la connaissance que nous avons de la nature précise de ces réseaux est encore limitée. Au niveau du cortex visuel, qui est l’aire cérébrale la plus étudiée, la manière dont les informations se transmettent de neurone en neurone est une question qui reste encore inexplorée. Cela nous invite à étudier l’émergence des microcircuits en réponse aux stimuli visuels. Autrement dit, comment l’interaction entre un stimulus et une assemblée cellulaire est-elle mise en place et modulée? Méthodes En réponse à la présentation de grilles sinusoïdales en mouvement, des ensembles neuronaux ont été enregistrés dans la couche II/III (aire 17) du cortex visuel primaire de chats anesthésiés, à l’aide de multi-électrodes en tungstène. Des corrélations croisées ont été effectuées entre l’activité de chacun des neurones enregistrés simultanément pour mettre en évidence les liens fonctionnels de quasi-synchronie (fenêtre de ± 5 ms sur les corrélogrammes croisés corrigés). Ces liens fonctionnels dévoilés indiquent des connexions synaptiques putatives entre les neurones. Par la suite, les histogrammes peri-stimulus (PSTH) des neurones ont été comparés afin de mettre en évidence la collaboration synergique temporelle dans les réseaux fonctionnels révélés. Enfin, des spectrogrammes dépendants du taux de décharges entre neurones ou stimulus-dépendants ont été calculés pour observer les oscillations gamma dans les microcircuits émergents. Un indice de corrélation (Rsc) a également été calculé pour les neurones connectés et non connectés. Résultats Les neurones liés fonctionnellement ont une activité accrue durant une période de 50 ms contrairement aux neurones fonctionnellement non connectés. Cela suggère que les connexions entre neurones mènent à une synergie de leur inter-excitabilité. En outre, l’analyse du spectrogramme dépendant du taux de décharge entre neurones révèle que les neurones connectés ont une plus forte activité gamma que les neurones non connectés durant une fenêtre d’opportunité de 50ms. L’activité gamma de basse-fréquence (20-40 Hz) a été associée aux neurones à décharge régulière (RS) et l’activité de haute fréquence (60-80 Hz) aux neurones à décharge rapide (FS). Aussi, les neurones fonctionnellement connectés ont systématiquement un Rsc plus élevé que les neurones non connectés. Finalement, l’analyse des corrélogrammes croisés révèle que dans une assemblée neuronale, le réseau fonctionnel change selon l’orientation de la grille. Nous démontrons ainsi que l’intensité des relations fonctionnelles dépend de l’orientation de la grille sinusoïdale. Cette relation nous a amené à proposer l’hypothèse suivante : outre la sélectivité des neurones aux caractères spécifiques du stimulus, il y a aussi une sélectivité du connectome. En bref, les réseaux fonctionnels «signature » sont activés dans une assemblée qui est strictement associée à l’orientation présentée et plus généralement aux propriétés des stimuli. Conclusion Cette étude souligne le fait que l’assemblée cellulaire, plutôt que le neurone, est l'unité fonctionnelle fondamentale du cerveau. Cela dilue l'importance du travail isolé de chaque neurone, c’est à dire le paradigme classique du taux de décharge qui a été traditionnellement utilisé pour étudier l'encodage des stimuli. Cette étude contribue aussi à faire avancer le débat sur les oscillations gamma, en ce qu'elles surviennent systématiquement entre neurones connectés dans les assemblées, en conséquence d’un ajout de cohérence. Bien que la taille des assemblées enregistrées soit relativement faible, cette étude suggère néanmoins une intrigante spécificité fonctionnelle entre neurones interagissant dans une assemblée en réponse à une stimulation visuelle. Cette étude peut être considérée comme une prémisse à la modélisation informatique à grande échelle de connectomes fonctionnels.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Contexte La connectomique, ou la cartographie des connexions neuronales, est un champ de recherche des neurosciences évoluant rapidement, promettant des avancées majeures en ce qui concerne la compréhension du fonctionnement cérébral. La formation de circuits neuronaux en réponse à des stimuli environnementaux est une propriété émergente du cerveau. Cependant, la connaissance que nous avons de la nature précise de ces réseaux est encore limitée. Au niveau du cortex visuel, qui est l’aire cérébrale la plus étudiée, la manière dont les informations se transmettent de neurone en neurone est une question qui reste encore inexplorée. Cela nous invite à étudier l’émergence des microcircuits en réponse aux stimuli visuels. Autrement dit, comment l’interaction entre un stimulus et une assemblée cellulaire est-elle mise en place et modulée? Méthodes En réponse à la présentation de grilles sinusoïdales en mouvement, des ensembles neuronaux ont été enregistrés dans la couche II/III (aire 17) du cortex visuel primaire de chats anesthésiés, à l’aide de multi-électrodes en tungstène. Des corrélations croisées ont été effectuées entre l’activité de chacun des neurones enregistrés simultanément pour mettre en évidence les liens fonctionnels de quasi-synchronie (fenêtre de ± 5 ms sur les corrélogrammes croisés corrigés). Ces liens fonctionnels dévoilés indiquent des connexions synaptiques putatives entre les neurones. Par la suite, les histogrammes peri-stimulus (PSTH) des neurones ont été comparés afin de mettre en évidence la collaboration synergique temporelle dans les réseaux fonctionnels révélés. Enfin, des spectrogrammes dépendants du taux de décharges entre neurones ou stimulus-dépendants ont été calculés pour observer les oscillations gamma dans les microcircuits émergents. Un indice de corrélation (Rsc) a également été calculé pour les neurones connectés et non connectés. Résultats Les neurones liés fonctionnellement ont une activité accrue durant une période de 50 ms contrairement aux neurones fonctionnellement non connectés. Cela suggère que les connexions entre neurones mènent à une synergie de leur inter-excitabilité. En outre, l’analyse du spectrogramme dépendant du taux de décharge entre neurones révèle que les neurones connectés ont une plus forte activité gamma que les neurones non connectés durant une fenêtre d’opportunité de 50ms. L’activité gamma de basse-fréquence (20-40 Hz) a été associée aux neurones à décharge régulière (RS) et l’activité de haute fréquence (60-80 Hz) aux neurones à décharge rapide (FS). Aussi, les neurones fonctionnellement connectés ont systématiquement un Rsc plus élevé que les neurones non connectés. Finalement, l’analyse des corrélogrammes croisés révèle que dans une assemblée neuronale, le réseau fonctionnel change selon l’orientation de la grille. Nous démontrons ainsi que l’intensité des relations fonctionnelles dépend de l’orientation de la grille sinusoïdale. Cette relation nous a amené à proposer l’hypothèse suivante : outre la sélectivité des neurones aux caractères spécifiques du stimulus, il y a aussi une sélectivité du connectome. En bref, les réseaux fonctionnels «signature » sont activés dans une assemblée qui est strictement associée à l’orientation présentée et plus généralement aux propriétés des stimuli. Conclusion Cette étude souligne le fait que l’assemblée cellulaire, plutôt que le neurone, est l'unité fonctionnelle fondamentale du cerveau. Cela dilue l'importance du travail isolé de chaque neurone, c’est à dire le paradigme classique du taux de décharge qui a été traditionnellement utilisé pour étudier l'encodage des stimuli. Cette étude contribue aussi à faire avancer le débat sur les oscillations gamma, en ce qu'elles surviennent systématiquement entre neurones connectés dans les assemblées, en conséquence d’un ajout de cohérence. Bien que la taille des assemblées enregistrées soit relativement faible, cette étude suggère néanmoins une intrigante spécificité fonctionnelle entre neurones interagissant dans une assemblée en réponse à une stimulation visuelle. Cette étude peut être considérée comme une prémisse à la modélisation informatique à grande échelle de connectomes fonctionnels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les circuits neuronaux peuvent générer une panoplie de rythmes. Nous pouvons séparer les mécanismes de création de ces rythmes en deux grands types. Le premier consiste de circuits contrôlés par des cellules « pacemakers », ayant une activité rythmique intrinsèque, comme dans le ganglion stomatogastique des crustacés. Le deuxième consiste de circuits multi-neuronaux connectés par un réseau synaptique qui permet une activité rythmique sans la présence de neurones pacemakers, tel que démontré pour les circuits de la nage chez plusieurs vertébrés. Malgré nos connaissances des mécanismes de rhythmogénèse chez les vertébrés adultes, les mécanismes de la création et la maturation de ces circuits locomoteurs chez les embryons restent encore inconnus. Nous avons étudié cette question à l’aide du poisson-zébré où les embryons débutent leur activité motrice par des contractions spontanées alternantes à 17 heures post-fertilisation (hpf). Des études ont démontré que cette activité spontanée n’est pas sensible aux antagonistes de la transmission synaptique chimique et ne requiert pas le rhombencéphale. Après 28 hpf, les embryons commencent à nager et se propulser en réponse au toucher. Des études antérieures on démontré que l’apparition de la nage nécessite le rhombencéphale et la transmission synaptique chimique. Cette thèse explore la possibilité que ces changements comportementaux représentent la progression d’un circuit contrôle par un pacemaker à un circuit ou le rythme provient d’un circuit distribué. En mesurant le groupement des contractions de l’activité spontanée, plutôt que la fréquence moyenne, nous avons découvert une nouvelle forme d’activité spontanée qui débute à 22 hpf. Cette activité consiste de deux contractions alternantes à succession très rapide. Contrairement à l’activité spontanée présente dès 17 hpf cette nouvelle forme d’activité requiert le rhombencéphale et la transmission synaptique chimique, comme démontré pour la nage qui apparait à 28 hpf. Cette forme de comportement intermédiaire représente potentiellement une étape transitoire lors de la maturation des circuits moteurs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La consolidation est le processus qui transforme une nouvelle trace mnésique labile en ‎une autre plus stable et plus solide. Une des tâches utilisées en laboratoire pour ‎l’exploration de la consolidation motrice dans ses dimensions comportementale et ‎cérébrale est la tâche d’apprentissage de séquences motrices. Celle-ci consiste à ‎reproduire une même série de mouvements des doigts, apprise de manière implicite ou ‎explicite, tout en mesurant l’amélioration dans l’exécution. Les études récentes ont ‎montré que, dans le cas de l’apprentissage explicite de cette tâche, la consolidation de la ‎trace mnésique associée à cette nouvelle habileté dépendrait du sommeil, et plus ‎particulièrement des fuseaux en sommeil lent. Et bien que deux types de fuseaux aient ‎été décrits (lents et rapides), le rôle de chacun d’eux dans la consolidation d’une ‎séquence motrice est encore mal exploré. En effet, seule une étude s’est intéressée à ce ‎rôle, montrant alors une implication des fuseaux rapides dans ce processus mnésique ‎suite à une nuit artificiellement altérée. D’autre part, les études utilisant l’imagerie ‎fonctionnelle (IRMf et PET scan) menées par différentes équipes dont la notre, ont ‎montré des changements au niveau de l’activité du système cortico-striatal suite à la ‎consolidation motrice. Cependant, aucune corrélation n’a été faite à ce jour entre ces ‎changements et les caractéristiques des fuseaux du sommeil survenant au cours de la nuit ‎suivant un apprentissage moteur. Les objectifs de cette thèse étaient donc: 1) de ‎déterminer, à travers des enregistrements polysomnographiques et des analyses ‎corrélationnelles, les caractéristiques des deux types de fuseaux (i.e. lents et rapides) ‎associées à la consolidation d’une séquence motrice suite à une nuit de sommeil non ‎altérée, et 2) d’explorer, à travers des analyses corrélationnelles entre les données ‎polysomnographiques et le signal BOLD (« Blood Oxygenated Level Dependent »), ‎acquis à l’aide de l’imagerie par résonance magnétique fonctionnelle (IRMf), ‎l’association entre les fuseaux du sommeil et les activations cérébrales suite à la ‎consolidation de la séquence motrice. Les résultats de notre première étude ont montré ‎une implication des fuseaux rapides, et non des fuseaux lents, dans la consolidation ‎d’une séquence motrice apprise de manière explicite après une nuit de sommeil non ‎altérée, corroborant ainsi les résultats des études antérieures utilisant des nuits de ‎sommeil altérées. En effet, les analyses statistiques ont mis en évidence une ‎augmentation significative de la densité des fuseaux rapides durant la nuit suivant ‎l’apprentissage moteur par comparaison à la nuit contrôle. De plus, cette augmentation ‎corrélait avec les gains spontanés de performance suivant la nuit. Par ailleurs, les ‎résultats de notre seconde étude ont mis en évidence des corrélations significatives entre ‎l’amplitude des fuseaux de la nuit expérimentale d’une part et les gains spontanés de ‎performance ainsi que les changements du signal BOLD au niveau du système cortico-‎striatal d’autre part. Nos résultats suggèrent donc un lien fonctionnel entre les fuseaux ‎du sommeil, les gains de performance ainsi que les changements neuronaux au niveau ‎du système cortico-striatal liés à la consolidation d’une séquence motrice explicite. Par ‎ailleurs, ils supportent l’implication des fuseaux rapides dans ce type de consolidation ; ‎ceux-ci aideraient à l’activation des circuits neuronaux impliqués dans ce processus ‎mnésique et amélioreraient par la même occasion la consolidation motrice liée au ‎sommeil.‎

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La dopamine (DA) est un neurotransmetteur impliqué dans la modulation de fonctions essentielles du cerveau telles que le contrôle des mouvements volontaires, le système de récompense et certains aspects de la cognition. Depuis sa découverte, la DA a attiré énormément d'attention scientifique en partie à cause des pathologies majeures associées aux dysfonctions du système DAergique, comme la maladie de Parkinson, la schizophrénie et la toxicomanie. On retrouve la majorité des neurones qui synthétisent la DA au niveau du mésencéphale ventral, dans les noyaux de la substance noire compacte (SNc) et de l'aire tegmentaire ventrale (ATV). Ces neurones projettent leurs axones dans un très dense réseau de fibres qui s'organisent en trois voies DAergiques classiques: la voie nigrostriée, la voie mésolimbique et la voie mésocorticale. La transmission DAergique s'effectue par l'activation de récepteurs de la DA qui font partie de la grande famille des récepteurs couplés aux protéines G (RCPGs). Les récepteurs de la DA sont abondamment exprimés aussi bien par les neurones DAergiques que par les neurones des régions cibles, ce qui implique que la compréhension de la signalisation et des fonctions particulières des récepteurs de la DA pré- et postsynaptiques représente un enjeu crucial dans l'étude du système DAergique. Cette thèse de doctorat se sépare donc en deux volets distincts: le premier s'intéresse à la régulation du récepteur D2 présynaptique par la neurotensine (NT), un neuropeptide intimement lié à la modulation du système DAergique; le deuxième s'intéresse au côté postsynaptique du système DAergique, plus particulièrement à la ségrégation de l'expression des récepteurs de la DA dans le striatum et aux fonctions de ces récepteurs dans l'établissement des circuits neuronaux excitateurs prenant place dans cette région. Dans la première partie de cette thèse, nous démontrons que l'activation du récepteur à haute affinité de la NT, le NTR1, provoque une internalisation hétérologue du récepteur D2, avec une amplitude et une cinétique différente selon l'isoforme D2 observé. Cette internalisation hétérologue dépend de la protéine kinase C (PKC), et nous montrons que la surexpression d'un récepteur D2 muté sur des sites de phosphorylation par la PKC ii ainsi que l'inhibition de l'expression de β-arrestine1 par ARNs interférents dans des neurones DAergiques bloquent complètement l'interaction fonctionnelle entre le NTR1 et le D2. Dans la deuxième partie de cette thèse, nous démontrons d'abord que la ségrégation de l'expression des récepteurs D1 et D2 dans le striatum est déjà bien établie dès le 18e jour embryonnaire, bien qu'elle progresse encore significativement aux jours 0 et 14 postnataux. Nos résultats témoignent aussi d'un maintien complet de cette ségrégation lorsque les neurones striataux sont mis en culture aussi bien en présence ou en absence de neurones corticaux et/ou mésencéphaliques. Ensuite, nous montrons que la présence de neurones mésencéphaliques stimule la formation d’épines et de synapses excitatrices sur les neurones striataux épineux exprimant le récepteur D2 (MSN-D2). Le co-phénotype glutamatergique des neurones dopaminergiques semble nécessaire à une grande partie de cet effet. Par ailleurs, le nombre total de terminaisons excitatrices formées sur les MSN-D2 par les neurones corticaux et mésencéphaliques apparaît être régit par un équilibre dynamique. Finalement, nous démontrons que le blocage de la signalisation des récepteurs D1 et D2 de la DA n'est pas nécessaire pour la formation des synapses excitatrices des MSN-D2, alors que l'antagonisme des récepteurs glutamatergiques ionotropes diminue la densité d'épines dendritiques et contrôle de façon opposée le nombre de terminaisons excitatrices corticales et mésencéphaliques. Globalement, ce travail représente une contribution significative pour une meilleure compréhension du fonctionnement normal du système DAergique. Ces découvertes sont susceptibles d’être utiles pour mieux comprendre les dysfonctions de ce système dans le cadre de pathologies du cerveau comme la maladie de Parkinson.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La mémoire n’est pas un processus unitaire et est souvent divisée en deux catégories majeures: la mémoire déclarative (pour les faits) et procédurale (pour les habitudes et habiletés motrices). Pour perdurer, une trace mnésique doit passer par la consolidation, un processus par lequel elle devient plus robuste et moins susceptible à l’interférence. Le sommeil est connu comme jouant un rôle clé pour permettre le processus de consolidation, particulièrement pour la mémoire déclarative. Depuis plusieurs années cependant, son rôle est aussi reconnu pour la mémoire procédurale. Il est par contre intéressant de noter que ce ne sont pas tous les types de mémoire procédurale qui requiert le sommeil afin d’être consolidée. Entre autres, le sommeil semble nécessaire pour consolider un apprentissage de séquences motrices (s’apparentant à l’apprentissage du piano), mais pas un apprentissage d’adaptation visuomotrice (tel qu’apprendre à rouler à bicyclette). Parallèlement, l’apprentissage à long terme de ces deux types d’habiletés semble également sous-tendu par des circuits neuronaux distincts; c’est-à-dire un réseau cortico-striatal et cortico-cérébelleux respectivement. Toutefois, l’implication de ces réseaux dans le processus de consolidation comme tel demeure incertain. Le but de cette thèse est donc de mieux comprendre le rôle du sommeil, en contrôlant pour le simple passage du temps, dans la consolidation de ces deux types d’apprentissage, à l’aide de l’imagerie par résonnance magnétique fonctionnelle et d’analyses de connectivité cérébrale. Nos résultats comportementaux supportent l’idée que seul l’apprentissage séquentiel requiert le sommeil pour déclencher le processus de consolidation. Nous suggérons de plus que le putamen est fortement associé à ce processus. En revanche, les performances d’un apprentissage visuomoteur s’améliorent indépendamment du sommeil et sont de plus corrélées à une plus grande activation du cervelet. Finalement, en explorant l’effet du sommeil sur la connectivité cérébrale, nos résultats démontrent qu’en fait, un système cortico-striatal semble être plus intégré suite à la consolidation. C’est-à-dire que l’interaction au sein des régions du système est plus forte lorsque la consolidation a eu lieu, après une nuit de sommeil. En opposition, le simple passage du temps semble nuire à l’intégration de ce réseau cortico-striatal. En somme, nous avons pu élargir les connaissances quant au rôle du sommeil pour la mémoire procédurale, notamment en démontrant que ce ne sont pas tous les types d’apprentissages qui requièrent le sommeil pour amorcer le processus de consolidation. D’ailleurs, nous avons également démontré que cette dissociation de l’effet du sommeil est également reflétée par l’implication de deux réseaux cérébraux distincts. À savoir, un réseau cortico-striatal et un réseau cortico-cérébelleux pour la consolidation respective de l’apprentissage de séquence et d’adaptation visuomotrice. Enfin, nous suggérons que la consolidation durant le sommeil permet de protéger et favoriser une meilleure cohésion au sein du réseau cortico-striatal associé à notre tâche; un phénomène qui, s’il est retrouvé avec d’autres types d’apprentissage, pourrait être considéré comme un nouveau marqueur de la consolidation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

L’hypothèse générale de ce projet soutient que le système moteur doit performer des transformations sensorimotrices afin de convertir les entrées sensorielles, concernant la position de la cible à atteindre, en commande motrice, afin de produire un mouvement du bras et de la main vers la cible à atteindre. Ce type de conversion doit être fait autant au niveau de la planification du mouvement que pour une éventuelle correction d’erreur de planification ou d’un changement inopiné de la position de la cible. La question de recherche du présent mémoire porte sur le ou les mécanismes, circuits neuronaux, impliqués dans ce type de transformation. Y a-t-il un seul circuit neuronal qui produit l’ensemble des transformations visuomotrices entre les entrées sensorielles et les sorties motrices, avant l’initiation du mouvement et la correction en temps réel du mouvement, lorsqu’une erreur ou un changement inattendu survient suite à l’initiation, ou sont-ils minimalement partiellement indépendants sur le plan fonctionnel? L’hypothèse de travail suppose qu’il n’y ait qu’un seul circuit responsable des transformations sensorimotrices, alors l’analyse des résultats obtenus par les participants devrait démontrer des changements identiques dans la performance pendant la phase de planification du mouvement d’atteinte et la phase de correction en temps réel après l’adaptation à des dissociations sensorimotrices arbitraires. L’approche expérimentale : Dans la perspective d’examiner cette question et vérifier notre hypothèse, nous avons jumelé deux paradigmes expérimentaux. En effet, les mouvements d’atteinte étaient soumis à une dissociation visuomotrice ainsi qu’à de rares essais composés de saut de cible. L’utilisation de dissociation visuomotrice permettait d’évaluer le degré d’adaptation des mécanismes impliqués dans le mouvement atteint. Les sauts de cible avaient l’avantage de permettre d’examiner la capacité d’adaptation à une dissociation visuomotrice des mécanismes impliqués dans la correction du mouvement (miroir : sur l’axe y, ou complète : inversion sur les axes x et y). Les résultats obtenus lors des analyses effectuées dans ce mémoire portent exclusivement sur l’habileté des participants à s’adapter aux deux dissociations visuomotrices à la première phase de planification du mouvement. Les résultats suggèrent que les mécanismes de planification du mouvement possèdent une grande capacité d’adaptation aux deux différentes dissociations visuomotrices. Les conclusions liées aux analyses présentées dans ce mémoire suggèrent que les mécanismes impliqués dans la phase de planification et d’initiation du mouvement parviennent relativement bien à s’adapter aux dissociations visuomotrices, miroir et inverse. Bien que les résultats démontrent une certaine distinction, entre les deux groupes à l’étude, quant aux délais nécessaires à cette adaptation, ils illustrent aussi un taux d’adaptation finale relativement similaire. L’analyse des réponses aux sauts de cible pourra être comparée aux résultats présentés dans ce mémoire afin de répondre à l’hypothèse de travail proposée par l’objectif initial de l’étude.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bien que le passage du temps altère le cerveau, la cognition ne suit pas nécessairement le même destin. En effet, il existe des mécanismes compensatoires qui permettent de préserver la cognition (réserve cognitive) malgré le vieillissement. Les personnes âgées peuvent utiliser de nouveaux circuits neuronaux (compensation neuronale) ou des circuits existants moins susceptibles aux effets du vieillissement (réserve neuronale) pour maintenir un haut niveau de performance cognitive. Toutefois, la façon dont ces mécanismes affectent l’activité corticale et striatale lors de tâches impliquant des changements de règles (set-shifting) et durant le traitement sémantique et phonologique n’a pas été extensivement explorée. Le but de cette thèse est d’explorer comment le vieillissement affecte les patrons d’activité cérébrale dans les processus exécutifs d’une part et dans l’utilisation de règles lexicales d’autre part. Pour cela nous avons utilisé l’imagerie par résonance magnétique fonctionnelle (IRMf) lors de la performance d’une tâche lexicale analogue à celle du Wisconsin. Cette tâche a été fortement liée à de l’activité fronto-stritale lors des changements de règles, ainsi qu’à la mobilisation de régions associées au traitement sémantique et phonologique lors de décisions sémantiques et phonologiques, respectivement. Par conséquent, nous avons comparé l’activité cérébrale de jeunes individus (18 à 35 ans) à celle d’individus âgés (55 à 75 ans) lors de l’exécution de cette tâche. Les deux groupes ont montré l’implication de boucles fronto-striatales associées à la planification et à l’exécution de changements de règle. Toutefois, alors que les jeunes semblaient activer une « boucle cognitive » (cortex préfrontal ventrolatéral, noyau caudé et thalamus) lorsqu’ils se voyaient indiquer qu’un changement de règle était requis, et une « boucle motrice » (cortex postérieur préfrontal et putamen) lorsqu’ils devaient effectuer le changement, les participants âgés montraient une activation des deux boucles lors de l’exécution des changements de règle seulement. Les jeunes adultes tendaient à présenter une augmentation de l’activité du cortex préfrontal ventrolatéral, du gyrus fusiforme, du lobe ventral temporale et du noyau caudé lors des décisions sémantiques, ainsi que de l’activité au niveau de l’aire de Broca postérieur, de la junction temporopariétale et du cortex moteur lors de décisions phonologiques. Les participants âgés ont montré de l’activité au niveau du cortex préfrontal latéral et moteur durant les deux types de décisions lexicales. De plus, lorsque les décisions sémantiques et phonologiques ont été comparées entre elles, les jeunes ont montré des différences significatives au niveau de plusieurs régions cérébrales, mais pas les âgés. En conclusion, notre première étude a montré, lors du set-shifting, un délai de l’activité cérébrale chez les personnes âgées. Cela nous a permis de conceptualiser l’Hypothèse Temporelle de Compensation (troisième manuscrit) qui consiste en l’existence d’un mécanisme compensatoire caractérisé par un délai d’activité cérébrale lié au vieillissement permettant de préserver la cognition au détriment de la vitesse d’exécution. En ce qui concerne les processus langagiers (deuxième étude), les circuits sémantiques et phonologiques semblent se fusionner dans un seul circuit chez les individus âgés, cela représente vraisemblablement des mécanismes de réserve et de compensation neuronales qui permettent de préserver les habilités langagières.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La déficience intellectuelle est la cause d’handicap la plus fréquente chez l’enfant. De nombreuses évidences convergent vers l’idée selon laquelle des altérations dans les gènes synaptiques puissent expliquer une fraction significative des affections neurodéveloppementales telles que la déficience intellectuelle ou encore l’autisme. Jusqu’à récemment, la majorité des mutations associées à la déficience intellectuelle a été liée au chromosome X ou à la transmission autosomique récessive. D’un autre côté, plusieurs études récentes suggèrent que des mutations de novo dans des gènes à transmission autosomique dominante, requis dans les processus de la plasticité synaptique peuvent être à la source d’une importante fraction des cas de déficience intellectuelle non syndromique. Par des techniques permettant la capture de l’exome et le séquençage de l’ADN génomique, notre laboratoire a précédemment reporté les premières mutations pathogéniques dans le gène à transmission autosomique dominante SYNGAP1. Ces dernières ont été associées à des troubles comportementaux tels que la déficience intellectuelle, l’inattention, des problèmes d’humeur, d’impulsivité et d’agressions physiques. D’autres patients sont diagnostiqués avec des troubles autistiques et/ou des formes particulières d’épilepsie généralisée. Chez la souris, le knock-out constitutif de Syngap1 (souris Syngap1+/-) résulte en des déficits comme l’hyperactivité locomotrice, une réduction du comportement associée à l’anxiété, une augmentation du réflexe de sursaut, une propension à l’isolation, des problèmes dans le conditionnement à la peur, des troubles dans les mémoires de travail, de référence et social. Ainsi, la souris Syngap1+/- représente un modèle approprié pour l’étude des effets délétères causés par l’haploinsuffisance de SYNGAP1 sur le développement de circuits neuronaux. D’autre part, il est de première importance de statuer si les mutations humaines aboutissent à l’haploinsuffisance de la protéine. SYNGAP1 encode pour une protéine à activité GTPase pour Ras. Son haploinsuffisance entraîne l’augmentation des niveaux d’activité de Ras, de phosphorylation de ERK, cause une morphogenèse anormale des épines dendritiques et un excès dans la concentration des récepteurs AMPA à la membrane postsynaptique des neurones excitateurs. Plusieurs études suggèrent que l’augmentation précoce de l’insertion des récepteurs AMPA au sein des synapses glutamatergiques contribue à certains phénotypes observés chez la souris Syngap1+/-. En revanche, les conséquences de l’haploinsuffisance de SYNGAP1 sur les circuits neuronaux GABAergiques restent inconnues. Les enjeux de mon projet de PhD sont: 1) d’identifier l’impact de mutations humaines dans la fonction de SYNGAP1; 2) de déterminer si SYNGAP1 contribue au développement et à la fonction des circuits GABAergiques; 3) de révéler comment l’haploinsuffisance de Syngap1 restreinte aux circuits GABAergiques affecte le comportement et la cognition. Nous avons publié les premières mutations humaines de type faux-sens dans le gène SYNGAP1 (c.1084T>C [p.W362R]; c.1685C>T [p.P562L]) ainsi que deux nouvelles mutations tronquantes (c.2212_2213del [p.S738X]; c.283dupC [p.H95PfsX5]). Ces dernières sont toutes de novo à l’exception de c.283dupC, héritée d’un père mosaïque pour la même mutation. Dans cette étude, nous avons confirmé que les patients pourvus de mutations dans SYNGAP1 présentent, entre autre, des phénotypes associés à des troubles comportementaux relatifs à la déficience intellectuelle. En culture organotypique, la transfection biolistique de l’ADNc de Syngap1 wild-type dans des cellules pyramidales corticales réduit significativement les niveaux de pERK, en fonction de l’activité neuronale. Au contraire les constructions plasmidiques exprimant les mutations W362R, P562L, ou celle précédemment répertoriée R579X, n’engendre aucun effet significatif sur les niveaux de pERK. Ces résultats suggèrent que ces mutations faux-sens et tronquante résultent en la perte de la fonction de SYNGAP1 ayant fort probablement pour conséquences d’affecter la régulation du développement cérébral. Plusieurs études publiées suggèrent que les déficits cognitifs associés à l’haploinsuffisance de SYNGAP1 peuvent émerger d’altérations dans le développement des neurones excitateurs glutamatergiques. Toutefois, si, et auquel cas, de quelle manière ces mutations affectent le développement des interneurones GABAergiques résultant en un déséquilibre entre l’excitation et l’inhibition et aux déficits cognitifs restent sujet de controverses. Par conséquent, nous avons examiné la contribution de Syngap1 dans le développement des circuits GABAergiques. A cette fin, nous avons généré une souris mutante knockout conditionnelle dans laquelle un allèle de Syngap1 est spécifiquement excisé dans les interneurones GABAergiques issus de l’éminence ganglionnaire médiale (souris Tg(Nkx2.1-Cre);Syngap1flox/+). En culture organotypique, nous avons démontré que la réduction de Syngap1 restreinte aux interneurones inhibiteurs résulte en des altérations au niveau de leur arborisation axonale et dans leur densité synaptique. De plus, réalisés sur des coupes de cerveau de souris Tg(Nkx2.1-Cre);Syngap1flox/+, les enregistrements des courants inhibiteurs postsynaptiques miniatures (mIPSC) ou encore de ceux évoqués au moyen de l’optogénétique (oIPSC) dévoilent une réduction significative de la neurotransmission inhibitrice corticale. Enfin, nous avons comparé les performances de souris jeunes adultes Syngap1+/-, Tg(Nkx2.1-Cre);Syngap1flox/+ à celles de leurs congénères contrôles dans une batterie de tests comportementaux. À l’inverse des souris Syngap1+/-, les souris Tg(Nkx2.1-Cre);Syngap1flox/+ ne présentent pas d’hyperactivité locomotrice, ni de comportement associé à l’anxiété. Cependant, elles démontrent des déficits similaires dans la mémoire de travail et de reconnaissance sociale, suggérant que l’haploinsuffisance de Syngap1 restreinte aux interneurones GABAergiques dérivés de l’éminence ganglionnaire médiale récapitule en partie certains des phénotypes cognitifs observés chez la souris Syngap1+/-. Mes travaux de PhD établissent pour la première fois que les mutations humaines dans le gène SYNGAP1 associés à la déficience intellectuelle causent la perte de fonction de la protéine. Mes études dévoilent, également pour la première fois, l’influence significative de ce gène dans la régulation du développement et de la fonction des interneurones. D’admettre l’atteinte des cellules GABAergiques illustre plus réalistement la complexité de la déficience intellectuelle non syndromique causée par l’haploinsuffisance de SYNGAP1. Ainsi, seule une compréhension raffinée de cette condition neurodéveloppementale pourra mener à une approche thérapeutique adéquate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La déficience intellectuelle est la cause d’handicap la plus fréquente chez l’enfant. De nombreuses évidences convergent vers l’idée selon laquelle des altérations dans les gènes synaptiques puissent expliquer une fraction significative des affections neurodéveloppementales telles que la déficience intellectuelle ou encore l’autisme. Jusqu’à récemment, la majorité des mutations associées à la déficience intellectuelle a été liée au chromosome X ou à la transmission autosomique récessive. D’un autre côté, plusieurs études récentes suggèrent que des mutations de novo dans des gènes à transmission autosomique dominante, requis dans les processus de la plasticité synaptique peuvent être à la source d’une importante fraction des cas de déficience intellectuelle non syndromique. Par des techniques permettant la capture de l’exome et le séquençage de l’ADN génomique, notre laboratoire a précédemment reporté les premières mutations pathogéniques dans le gène à transmission autosomique dominante SYNGAP1. Ces dernières ont été associées à des troubles comportementaux tels que la déficience intellectuelle, l’inattention, des problèmes d’humeur, d’impulsivité et d’agressions physiques. D’autres patients sont diagnostiqués avec des troubles autistiques et/ou des formes particulières d’épilepsie généralisée. Chez la souris, le knock-out constitutif de Syngap1 (souris Syngap1+/-) résulte en des déficits comme l’hyperactivité locomotrice, une réduction du comportement associée à l’anxiété, une augmentation du réflexe de sursaut, une propension à l’isolation, des problèmes dans le conditionnement à la peur, des troubles dans les mémoires de travail, de référence et social. Ainsi, la souris Syngap1+/- représente un modèle approprié pour l’étude des effets délétères causés par l’haploinsuffisance de SYNGAP1 sur le développement de circuits neuronaux. D’autre part, il est de première importance de statuer si les mutations humaines aboutissent à l’haploinsuffisance de la protéine. SYNGAP1 encode pour une protéine à activité GTPase pour Ras. Son haploinsuffisance entraîne l’augmentation des niveaux d’activité de Ras, de phosphorylation de ERK, cause une morphogenèse anormale des épines dendritiques et un excès dans la concentration des récepteurs AMPA à la membrane postsynaptique des neurones excitateurs. Plusieurs études suggèrent que l’augmentation précoce de l’insertion des récepteurs AMPA au sein des synapses glutamatergiques contribue à certains phénotypes observés chez la souris Syngap1+/-. En revanche, les conséquences de l’haploinsuffisance de SYNGAP1 sur les circuits neuronaux GABAergiques restent inconnues. Les enjeux de mon projet de PhD sont: 1) d’identifier l’impact de mutations humaines dans la fonction de SYNGAP1; 2) de déterminer si SYNGAP1 contribue au développement et à la fonction des circuits GABAergiques; 3) de révéler comment l’haploinsuffisance de Syngap1 restreinte aux circuits GABAergiques affecte le comportement et la cognition. Nous avons publié les premières mutations humaines de type faux-sens dans le gène SYNGAP1 (c.1084T>C [p.W362R]; c.1685C>T [p.P562L]) ainsi que deux nouvelles mutations tronquantes (c.2212_2213del [p.S738X]; c.283dupC [p.H95PfsX5]). Ces dernières sont toutes de novo à l’exception de c.283dupC, héritée d’un père mosaïque pour la même mutation. Dans cette étude, nous avons confirmé que les patients pourvus de mutations dans SYNGAP1 présentent, entre autre, des phénotypes associés à des troubles comportementaux relatifs à la déficience intellectuelle. En culture organotypique, la transfection biolistique de l’ADNc de Syngap1 wild-type dans des cellules pyramidales corticales réduit significativement les niveaux de pERK, en fonction de l’activité neuronale. Au contraire les constructions plasmidiques exprimant les mutations W362R, P562L, ou celle précédemment répertoriée R579X, n’engendre aucun effet significatif sur les niveaux de pERK. Ces résultats suggèrent que ces mutations faux-sens et tronquante résultent en la perte de la fonction de SYNGAP1 ayant fort probablement pour conséquences d’affecter la régulation du développement cérébral. Plusieurs études publiées suggèrent que les déficits cognitifs associés à l’haploinsuffisance de SYNGAP1 peuvent émerger d’altérations dans le développement des neurones excitateurs glutamatergiques. Toutefois, si, et auquel cas, de quelle manière ces mutations affectent le développement des interneurones GABAergiques résultant en un déséquilibre entre l’excitation et l’inhibition et aux déficits cognitifs restent sujet de controverses. Par conséquent, nous avons examiné la contribution de Syngap1 dans le développement des circuits GABAergiques. A cette fin, nous avons généré une souris mutante knockout conditionnelle dans laquelle un allèle de Syngap1 est spécifiquement excisé dans les interneurones GABAergiques issus de l’éminence ganglionnaire médiale (souris Tg(Nkx2.1-Cre);Syngap1flox/+). En culture organotypique, nous avons démontré que la réduction de Syngap1 restreinte aux interneurones inhibiteurs résulte en des altérations au niveau de leur arborisation axonale et dans leur densité synaptique. De plus, réalisés sur des coupes de cerveau de souris Tg(Nkx2.1-Cre);Syngap1flox/+, les enregistrements des courants inhibiteurs postsynaptiques miniatures (mIPSC) ou encore de ceux évoqués au moyen de l’optogénétique (oIPSC) dévoilent une réduction significative de la neurotransmission inhibitrice corticale. Enfin, nous avons comparé les performances de souris jeunes adultes Syngap1+/-, Tg(Nkx2.1-Cre);Syngap1flox/+ à celles de leurs congénères contrôles dans une batterie de tests comportementaux. À l’inverse des souris Syngap1+/-, les souris Tg(Nkx2.1-Cre);Syngap1flox/+ ne présentent pas d’hyperactivité locomotrice, ni de comportement associé à l’anxiété. Cependant, elles démontrent des déficits similaires dans la mémoire de travail et de reconnaissance sociale, suggérant que l’haploinsuffisance de Syngap1 restreinte aux interneurones GABAergiques dérivés de l’éminence ganglionnaire médiale récapitule en partie certains des phénotypes cognitifs observés chez la souris Syngap1+/-. Mes travaux de PhD établissent pour la première fois que les mutations humaines dans le gène SYNGAP1 associés à la déficience intellectuelle causent la perte de fonction de la protéine. Mes études dévoilent, également pour la première fois, l’influence significative de ce gène dans la régulation du développement et de la fonction des interneurones. D’admettre l’atteinte des cellules GABAergiques illustre plus réalistement la complexité de la déficience intellectuelle non syndromique causée par l’haploinsuffisance de SYNGAP1. Ainsi, seule une compréhension raffinée de cette condition neurodéveloppementale pourra mener à une approche thérapeutique adéquate.