176 resultados para Chrysomya megacephala
Resumo:
In insects that utilize patchy and ephemeral resources for feeding and egg laying, the outcome of larval competition for food resources depends on the amount of resources and the spatial distribution of immatures among patches of food. In the present study, the results of larval competition for food in Chrysomya megacephala, in traits such as female weight, fecundity and reproductive investment, were different in situations where the level of larval aggregation (proportion of competitors per amount of food) was the same, but with densities of competitors and amounts of food proportionally different. These results are indicative that the larval competition may depend both on the larval density and the amount of food, in different situations with the same proportion of larvae per gram of food.
Resumo:
O objetivo do estudo foi levantar os principais parasitóides de Chrysomya megacephala, na cidade do Rio de Janeiro, RJ, devido a importância dessa mosca como vetor de patógenos para o ambiente urbano. As coletas foram realizadas semanalmente, no período de agosto de 1999 a julho de 2000, por meio da exposição de larvas e pupas da mosca em carne putrefata. Foram identificadas três espécies de microhimenópteros no local: Tachinaephagus zealandicus (Encyrtidae), Pachycrepoideus vindemiae (Pteromalidae) e Nasonia vitripennis (Pteromalidae), cujos testes posteriores poderão mostrar seu potencial para utilização em futuros programas de controle.
Resumo:
Foram determinadas as espécies de parasitóides associadas com Chrysomya megacephala, coletados com isca de rins de bovino, em Itumbiara, Estado de Goiás. As pupas foram obtidas pelo método de flutuação, individualizadas em cápsulas de gelatina e mantidas até a emergência das moscas e/ou dos parasitóides. A prevalência total de parasitismo foi de 18,6%. Brachymeria podagrica, Nasonia vitripennis e Pachycrepoideus vindemiae apresentaram uma freqüência de 8,6%, 8,6% e 1,4%, respectivamente. Relata-se a primeira ocorrência de Brachymeria podagrica em pupas de Chrysomya megacephala.
Resumo:
AbstractINTRODUCTION: This study evaluated whether different strains of Brevibacillus laterosporus could be used to control larvae of the blowfly Chrysomya megacephala , a pest that affects both human and animal health.METHODS:Mortality rates were recorded after 1-mL suspensions of sporulated cells of 14 different strains of B. laterosporus were added to 2.5g of premixed diet consisting of rotting ground beef fed to first instar larvae of C. megacephala . All bioassays were performed using 10 larvae per strain, with a minimum of three replicates for each bioassay. Larval mortality was recorded daily up to seven days.RESULTS:Strains Bon 707, IGM 16-92, and Shi 3 showed the highest toxicity toward the larvae producing 70.5%, 64.5%, and 51.6% of larval mortality, respectively, which was significantly higher than that in the control group (p < 0.05). In contrast, strains NRS 1642, NRS 661, NRS 590 BL 856, NRS 342, ATCC 6457, Bon 712, and NRS 1247 showed limited or no pathogenic activity against the target larvae.CONCLUSIONS:Our preliminary data indicated that B. laterosporus could be used to develop bioinsecticides against C. megacephala .
Resumo:
The blow flies Chrysomya putoria and C. megacephala have 2n=12 chromosomes, five metacentric pairs of autosomes and an XX/XY sex chromosome pair. There are no substantial differences in the karyotype morphology of these two species, except for the X chromosome which is subtelocentric in C. megacephala and metacentric in C. putoria and is about 1.4 times longer in C. putoria. All autosomes were characterized by the presence of a C band in the pericentromeric region; C. putoria also has an interstitial band in pair III. The sex chromosomes of both species were heterochromatic, except for a small region at the end of the long arm of the X chromosome. Ribosomal genes were detected in meiotic chromosomes by FISH and in both species the NOR was located on the sex chromosomes. These results confirm that C. putoria was the species introduced into Brazil in 1970s, and not C. chloropyga as formerly described.
Resumo:
Blowflies utilize discrete and ephemeral sites for breeding and larval nutrition. After the exhaustion of food, the larvae begin dispersing to search for sites to pupate or to additional food source, process referred as postfeeding larval dispersal. Some of the most important aspects of this process were investigated in Chrysomya megacephala, utilizing a circular arena to permit the radial dispersion of larvae from the center. To determinate the localization of each pupa, the arena was split in 72 equal sectors from the center. For each pupa, distance from the center of arena, weight and depth were determined. Statistical tests were performed to verify the relation among weight, depth and distance of burying for pupation. It was verified that the larvae that disperse farther are those with higher weights. The majority of individuals reached the depth of burying for pupation between 7 and 18 cm. The study of this process of dispersion can be utilized in the estimation of postmortem interval (PMI) for human corpses in medico-criminal investigations.
Resumo:
Este estudo foi realizado no período de agosto de 1999 a julho de 2000 com o objetivo de conhecer os parasitóides de Chrysomya megacephala (Fabricius, 1794) (Diptera, Calliphoridae) e avaliar sua dinâmica populacional no Instituto Oswaldo Cruz (IOC/ FIOCRUZ) e Jardim Zoológico, na cidade do Rio de Janeiro, RJ. As coletas foram realizadas semanalmente através da exposição de larvas de terceiro instar da mosca e seu substrato de criação, carne bovina moída em putrefação. Foram identificadas três espécies de himenópteros parasitóides: Tachinaephagus zealandicus Ashmead, 1904 (Encyrtidae), Pachycrepoideus vindemiae (Rondani, 1875) (Pteromalidae) and Nasonia vitripennis (Walker, 1836) (Pteromalidae). Nos dois locais, T. zealandicus foi a espécie com maior taxa de parasitismo de C. megacephala, seguida por P. vindemiae e N. vitripennis. A população de parasitóides diminuiu drasticamente no verão (temperatura média = 28°C; precipitação = 6,5 mm).O pico populacional desses insetos foi verificado no final do outono e durante todo o inverno. No Jardim Zoológico, o lixo acumulado no local de coleta exerceu forte influência na dinâmica populacional dos himenópteros parasitóides identificados nesse estudo e o pico populacional de parasitismo foi verificado em junho e julho de 2000.
Resumo:
Durante experimento de pesquisa envolvendo o parasitismo de larvas de terceiro ínstar e pupas de Chrysomya megacephala (Fabricius, 1794) em dois locais da cidade do Rio de Janeiro, RJ, observou-se a ocorrência de multiparasitismo em 1,83% das pupas expostas no Instituto Oswaldo Cruz (IOC) e em 2,16% expostas no Jardim Zoológico (ZOO). O experimento foi conduzido semanalmente de agosto de 1999 a julho de 2000. Em ambos os locais, houve a co-ocorrência de duas espécies por pupa e os parasitóides encontrados foram os himenópteros Tachinaephagus zealandicus Ashmead, 1904, Pachycrepoideus vindemiae (Rondani, 1875) e Nasonia vitripennis (Walker, 1836). 72,73% do multiparasitismo ocorreu no ZOO em julho de 2000. Em condições de multiparasitismo, T. zealandicus e P. vindemiae mantiveram seu hábito gregário e solitário, respectivamente, mas N. vitripennis foi encontrado solitário em algumas pupas.
Resumo:
Blowflies use discrete and ephemeral substrates to feed their larvae. After they run out of food, the larvae begin to disperse in order to find adequate places for pupation or additional food sources, a process named post-feeding larval dispersion. Some important aspects of this process were studied in a circular arena allowing the combined radial post-feeding dispersion from the center of the arena of C. albiceps and C. megacephala larvae. To determine the location of each pupa, the arena was divided in 72 identical sections starting from the center. The distance from the center, the depth and weight of each pupa were evaluated. Statistical tests were done to verify the relation between weight, depth and distance for pupation. From the total an average of 976 larvae released (488 for each species) were collected considering both experiments 456 C. megacephala pupae and 488 of C. albiceps. This demonstrates that C. albiceps probably preyed on 32 C. megacephala larvae during post-feeding dispersion. The study of this dispersion process can be used to estimate the postmortem interval (PMI) of human cadavers in legal medicine.
Resumo:
Blowflies use discrete, ephemeral breeding sites for larval nutrition. After exhaustion of the food supply, the larvae disperse in search of sites to pupate or to seek other sources of food in a process known as post-feeding larval dispersal. In this study, some of the most important aspects of this process were investigated in larvae of the blowflies Chrysomya megacephala exposed to a variety of light: dark (LD) cycles (0:0 h, 12:12 h and 24:0 h) and incubated in tubes covered with vermiculite. For each pupa, the body weight and depth of burrowing were determined. Statistical tests were used to examine the relationship of depth of burrowing and body weight to photoperiod at which burrowing occurred. The study of burial behavior in post-feeding larval dispersing can be useful for estimating the postmortem interval (PMI) of human corpses in forensic medicine.
Resumo:
The aim of this study was to verify the duration of the development period, number of parasitoids produced per pupa, parasitism rate and sex ratio of Nasonia vitripennis (Hymenoptera, Pteromalidae), when they were exposed to a single host: Chrysomya megacephala (Diptera, Calliphoridae). One pupa was exposed in glass tubes to different numbers of female parasitoids (1, 3, 5, 7, 9 and 11) during 48 h. Twenty replications/treatment were used, under controlled conditions (T= 27 °C day/ 25 °C night, 60 ± 10% RH). Statistical analysis of the data was made using the ANOVA test and the "a posteriori" comparisons were made using the Tukey-HSD test (both tests with a significance level of 5%). The duration of the development period was longer in treatments where a higher density of females per host was used. When five females per host were used, the mean number of parasitoids that emerged per pupa was higher. The data showed a tendency to a decrease in the amount of parasitoids emerged per host, especially of female, when used high quantities of female per host. Higher parasitism rates were observed in the 3:1 and 5:1 treatments and an increase in the percentage of unviable pupae was observed, probably due to an increase of female densities in the treatments, possibly a consequence of superparasitism.
Resumo:
The toxicity of tetrahydrofuran lignan grandisin was evaluated against larvae of Chrysomya megacephala F. (Diptera: Calliphoridae). The bioassay involved topical treatment on larvae, topical treatment oil egg masses, and incorporation in the larval diet. Grandisin showed inhibition of postembryonic development by ovicidal (30%) and larvicidal (38%) effects and reduced larval weight (4 mg), when topically applied oil egg masses and starving larvae (L1) at a concentration of 100 mu g/mu l. These findings elucidated the effect of grandisin on the C. megacephala life cycle and its potential to control C. megacephala populations.
Resumo:
Although insects lack the adaptive immune response of the mammalians, they manifest effective innate immune responses, which include both cellular and Immoral components. Cellular responses are mediated by hemocytes, and Immoral responses include the activation of proteolytic cascades that initiate many events, including NO production. In mammals, nitric oxide synthases (NOSs) are also present in the endothelium, the brain, the adrenal glands, and the platelets. Studies on the distribution of NO-producing systems in invertebrates have revealed functional similarities between NOS in this group and vertebrates. We attempted to localize NOS activity in tissues of naive (UIL), yeast-injected (YIL), and saline-injected (SIL) larvae of the blowfly Chrysomya megacephala, using the NADPH diaphorase technique. Our findings revealed similar levels of NOS activity in muscle, fat body, Malpighian tubule, gut, and brain, suggesting that NO synthesis may not be involved in the immune response of these larval systems. These results were compared to many studies that recorded the involvement of NO in various physiological functions of insects.
Resumo:
Chrysomya albiceps and Chrysomya megacephala are exotic blowfly species known by producing myiasis in humans and other animals and by transmitting pathogens mechanically. C. albiceps stand out by being a facultative predator of other dipteran larvae. In this paper we investigated the influence of larval predation on the dispersal of larvae of C. albiceps and C. megacephala single and double species for three photophases. An experimental acrylic channel graduated and covered with wood shavings was used to observe the larval dispersal. The results showed that C. albiceps attacks C. megacephala larvae during dispersal and keeps an aggregated pattern close to the release point, in single and double species, independently of the different photophases. Chrysomya megacephala single species exhibited the same pattern, but in double species this was changed to a random distribution.