978 resultados para Chronic Progressive
Resumo:
We report a sporadic case of chronic progressive external ophthalmoplegia associated with ragged red fibers. The patient presented with enlarged mitochondria with deranged internal architecture and crystalline inclusions. Biochemical studies showed reduced activities of complex I, III and IV in skeletal muscle. Molecular genetic analysis of all mitochondrial tRNAs revealed a G to A transition at nt 4308; the G is a highly conserved nucleotide that participates in a GC base-pair in the T-stem of mammalian mitochondrial tRNA(Ile). The mutation was detected at a high level (approx. 50%) in muscle but not in blood. The mutation co-segregated with the phenotype, as the mutation was absent from blood and muscle in the patient's healthy mother. Functional characterization of the mutation revealed a six-fold reduced rate of tRNA(Ile) precursor 3' end maturation in vitro by tRNAse Z. Furthermore, the mutated tRNA(Ile) displays local structural differences from wild-type. These results suggest that structural perturbations reduce efficiency of tRNA(Ile) precursor 3' end processing and contribute to the molecular pathomechanism of this mutation.
Resumo:
BACKGROUND/AIM To investigate the underlying pathomechanism in a 33-year-old female Caucasian patient presenting with chronic progressive external ophthalmoplegia (CPEO) plus symptoms. METHODS Histochemical analysis of skeletal muscle and biochemical measurements of individual oxidative phosphorylation (OXPHOS) complexes. Genetic analysis of mitochondrial DNA in various tissues with subsequent investigation of single muscle fibres for correlation of mutational load. RESULTS The patient's skeletal muscle showed 20% of cytochrome c oxidase-negative fibres and 8% ragged-red fibres. Genetic analysis of the mitochondrial DNA revealed a novel point mutation in the mitochondrial tRNA(Ile) (MTTI) gene at position m.4282G>A. The heteroplasmy was determined in blood, buccal cells and muscle by restriction fragment length polymorphism (RFLP) combined with a last fluorescent cycle. The total mutational load was 38% in skeletal muscle, but was not detectable in blood or buccal cells of the patient. The phenotype segregated with the mutational load as determined by analysis of single cytochrome c oxidase-negative/positive fibres by laser capture microdissection and subsequent LFC-RFLP. CONCLUSIONS We describe a novel MTTI transition mutation at nucleotide position m.4282G>A associated with a CPEO plus phenotype. The novel variant at position m.4282G>A disrupts the middle bond of the D-stem of the tRNA(Ile) and is highly conserved. The conservation and phenotype-genotype segregation strongly suggest pathogenicity and is in good agreement with the MTTI gene being frequently associated with CPEO. This novel variant broadens the spectrum of MTTI mutations causing CPEO.
Resumo:
A 2-year, placebo-controlled, double-blind, crossover study was started in 1992 to evaluate cladribine, an immunosuppressive drug, in the treatment of chronic progressive multiple sclerosis. In the first year patients were given cladribine 0.10 mg/kg per day for 7 days as four monthly courses for a total of 2.8 mg/kg or placebo. During the second year patients treated with placebo during the first year were given i.v. infusions of 0.10 mg, 0.05 mg, and 0.05 mg of cladribine per kg of body weight per day for 7 consecutive days in three successive monthly courses, for a total dose of 1.4 mg/kg. Patients who had been treated previously with cladribine were crossed over to placebo. Analysis of the results revealed a favorable influence on the neurological performance scores, both in the Kurtze extended disability status and the Scripps neurological rating scale, and on MRI findings in patients treated with cladribine. In the first year the most striking finding was that while clinical deterioration continued in the placebo-treated patients, the condition of patients who received cladribine stabilized or even improved slightly. Toxicity and therapeutic response were dose-related.
Resumo:
Background:Cervical compressive myelopathy, e.g. due to spondylosis or ossification of the posterior longitudinal ligament is a common cause of spinal cord dysfunction. Although human pathological studies have reported neuronal loss and demyelination in the chronically compressed spinal cord, little is known about the mechanisms involved. In particular, the neuroinflammatory processes that are thought to underlie the condition are poorly understood. The present study assessed the localized prevalence of activated M1 and M2 microglia/macrophages in twy/twy mice that develop spontaneous cervical spinal cord compression, as a model of human disease.Methods:Inflammatory cells and cytokines were assessed in compressed lesions of the spinal cords in 12-, 18- and 24-weeks old twy/twy mice by immunohistochemical, immunoblot and flow cytometric analysis. Computed tomography and standard histology confirmed a progressive spinal cord compression through the spontaneously development of an impinging calcified mass.Results:The prevalence of CD11b-positive cells, in the compressed spinal cord increased over time with a concurrent decrease in neurons. The CD11b-positive cell population was initially formed of arginase-1- and CD206-positive M2 microglia/macrophages, which later shifted towards iNOS- and CD16/32-positive M1 microglia/macrophages. There was a transient increase in levels of T helper 2 (Th2) cytokines at 18 weeks, whereas levels of Th1 cytokines as well as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and macrophage antigen (Mac) -2 progressively increased.Conclusions:Spinal cord compression was associated with a temporal M2 microglia/macrophage response, which may act as a possible repair or neuroprotective mechanism. However, the persistence of the neural insult also associated with persistent expression of Th1 cytokines and increased prevalence of activated M1 microglia/macrophages, which may lead to neuronal loss and demyelination despite the presence of neurotrophic factors. This understanding of the aetiopathology of chronic spinal cord compression is of importance in the development of new treatment targets in human disease. © 2013 Hirai et al.
Resumo:
Neurodegenerative disorders are chronic, progressive, and often fatal disorders of the nervous system caused by dysfunction, and ultimately, death of neuronal cells. The underlying mechanisms of neurodegeneration are poorly understood, and monogenic disorders can be utilised as disease models to elucidate the pathogenesis. Juvenile neuronal ceroid-lipofuscinosis (JNCL, Batten disease) is a recessively inherited lysosomal storage disorder with progressive neurodegeneration and accumulation of autofluorescent storage material in most tissues. It is caused by mutations in the CLN3 gene; however, the exact function of the corresponding CLN3 protein, as well as the molecular mechanisms of JNCL pathogenesis have remained elusive. JNCL disease exclusively affects the central nervous system leaving other organs unaffected, and therefore it is of a particular importance to conduct studies in brain tissue and neuronal cells. The aim of this thesis project was to elucidate the molecular and cell biological mechanisms underlying JNCL. This was the first study to describe the endogenous Cln3 protein, and it was shown that Cln3 localised to neuronal cells in the mouse brain. At a subcellular level, endogenous Cln3 was localised to the presynaptic terminals and to the synaptosome compartment, but not to the synaptic vesicles. Studies with the CLN3-deficient cells demonstrated an impaired endocytic membrane trafficking, and established an interconnection between CLN3, microtubulus-binding Hook1 and Rab proteins. This novel data was not only important in characterising the roles of CLN3 in cells, but also provided significant information delineating the versatile role of the Rab proteins. To identify affected cellular pathways in JNCL, global gene expression profiling of the knock-out mouse Cln3-/- neurons was performed and systematically analysed; this revealed a slight dysfunction of the mitochondria, cytoskeletal abnormality in the microtubule plus-end, and an impaired recovery from depolarizing stimulus when specific N-type Ca2+ channels were inhibited, thus leading to a prolonged time of higher intracellular calcium. All these defective pathways are interrelated, and may together be sufficient to initiate the neurodegenerative process. Results of this thesis also suggest that in neuronal cells, CLN3 most likely functions at endocytic vesicles at the presynaptic terminal, potentially involved in the regulation of the calcium-mediated synaptic transmission.
Resumo:
Introduction: Parkinson‟s disease (PD) is characterized by a chronic progressive loss of nigrostriatal dopaminergic neurons that is associated with chronic neuroinflammation. Current treatments for PD can significantly improve symptoms but do not cure the disease or slow its progression. An approach used in existing therapies is based on the inhibition of monoamine oxidase (MAO), enzyme involved in the metabolic degradation of dopamine. Although, preclinical studies showed that MAO-B inhibitors have neuroprotective activity in cellular and animal models of PD, clinical trials did not completely confirm this result. Therefore a large number of new molecules, with more potent MAO-B inhibitory activity and a possible neuroprotective effect, have been proposed to replace the pre-existing MAO-B inhibitors. The profile of the recent MAO inhibitor, SZV558, appears to be particularly interesting because of its pharmacodynamic, favorable for disease-modifying properties and its irreversible MAO-B enzyme bind. The enhancement of adult neurogenesis could be of great clinical interest in the management of neurodegenerative disorders. In line with this, the metformin, a well-known antidiabetic drug, has recently been proposed to promote neurogenesis and to have a neuroprotective effect on the neurodegenerative processes induced by the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in a mice PD model. Although, PD has multiple origins, one hypothesis is that amphetamine-related drugs may be part of the wide array of factors leading to the dopaminergic neuron degeneration that causes the disease. These hypothesis are supported by different results that showed a persistent, long-term dopaminergic toxicity induced by 3,4-methylenedioxymethamphetamine (MDMA) in mice. Moreover, the MDMA, altering the dopaminergic transmission, may affect neurogenesis and synaptogenesis. On these basis, considering that the young brain is particularly sensitive to drug-induced neurotoxicity, the consumption of MDMA during the adolescence might increase the vulnerability of dopaminergic neurons. However, the use of amphetamine-related drugs by adolescent and young people is often combined with caffeinated energy drinks in order to amplify their stimulant actions. Although caffeine use is safe, the combined treatment of caffeine and MDMA increases not only the DA release but also the microglia and astroglia activation. Aims: During my Ph.D. I studied the influence of neuroprotective drugs, such as MAO inhibitors and metformin, or substances, such as caffeine, on the neurodegenerative effects of two dopaminergic toxins, MDMA and MPTP, in mice. 1. In the first phase of my study, I evaluated the neuroprotective activity of the new MAO-B inhibitor SZV558, compared with well-known rasagiline, in a chronic mouse model of MPTP plus probenecid (MPTPp), which induces a progressive loss of nigrostriatal dopaminergic neurons. 2. Previous results showed that when MDMA is associated with caffeine, a more pronounced degeneration in adolescent compared with adult mice was observed. To better clarify the molecular mechanism at the base of the different neurotoxic effect of this drug association at different ages, I evaluated the neuronal nitric oxide synthase (nNOS) expression, which plays a critical role in the integration of dopaminergic and glutamatergic transmissions, in the CPu of adolescent or adult mice treated with MDMA, alone or in combination with caffeine. 3. Finally, I investigated the neuroprotective effect of metformin against dopaminergic neurotoxicity induced by MDMA in the CPu and SNc of adult mice. Conclusions: These results demonstrated that the dopaminergic neurodegenerative process may be induced or conditioned by environment stressors or substances which influence, through different ways, the development of neurodegenerative mechanisms. In the present study I evaluated the effects of 3 substances, known as potentially neuroprotective, in combination with two different neurotoxins that affect the nigrostriatal dopaminergic system. The SZV558 MAO-B inhibitor and the metformin protected the nigrostriatal pathway, usually affected in PD, by MPTP- and MDMA- induced neurotoxicity, respectively. On the other hand, caffeine, administrated with MDMA, showed a neurotoxic potential depending on the age of consumers, confirming the vulnerability of adolescent brain to consumption of drug and substances that affected the dopaminergic system. In conclusion, the study of neurodegenerative processes may be relevant to understand the human pharmacology, the origin and development of neurodegenerative disease and to predict the neurotoxic effect of drug abuse.
Resumo:
Blood-brain barrier (BBB) breakdown, demonstrable in vivo by enhanced MRI is characteristic of new and expanding inflammatory lesions in relapsing remitting and chronic progressive multiple sclerosis (MS). Subtle leakage may also occur in primary progressive MS. However, the anatomical route(s) of BBB leakage have not been demonstrated. We investigated the possible involvement of interendothelial tight junctions (TJ) by examining the expression of TJ proteins (occludin and ZO-1 ) in blood vessels in active MS lesions from 8 cases of MS and in normal-appearing white (NAWM) matter from 6 cases. Blood vessels (10-50 per frozen section) were scanned using confocal laser scanning microscopy to acquire datasets for analysis. TJ abnormalities manifested as beading, interruption, absence or diffuse cytoplasmic localization of fluorescence, or separation of junctions (putative opening) were frequent (affecting 40% of vessels) in oil red-O-positive active plaques but less frequent in NAWM (15%), and in normal (
Resumo:
Parkinson's disease (PD) is a chronic, progressive, degenerative disorder of the nervous system, causing substantial morbidity and has the capacity to shorten life. People with PD and their families can find the disease devastating. Nevertheless, this population of patients is not usually considered a group to be supported by palliative care specialists. But the nature of the illness and the challenges of managing its many physical and psychological effects raises questions about the potential benefits of a palliative care approach. The purpose of this project was to describe the experience of PD and consider the relevance of palliative care for this population. Semi-structured interviews were conducted with eight people with PD, 21 family caregivers and six health professionals. Five themes were developed from the data analysis: (1) emotional impact of diagnosis; (2) staying connected; (3) enduring financial hardship; (4) managing physical challenges; and (5) finding help for advanced stages. These data revealed that people with PD and family caregivers are confronted with similar issues to people with typical palliative care diagnoses, such as advanced cancer, and that a palliative approach may be helpful in the care of people with PD and their families.
Resumo:
Alzheimer’s disease is a chronic progressive neurodegenerative disease and is the most common form of dementia (estimated 50−60% of all cases), associated with loss of memory (in particular episodic memory), cognitive decline, and behavioural and physical disability, ultimately leading to death. Alzheimer’s disease is a complex disease, mostly occurring sporadically with no apparent inheritance and being the age the main risk factor. The production and accumulation of amyloid-beta peptide in the central nervous system is a key event in the development of Alzheimer’s disease. This project is devoted to the synthesis of amyloid-beta ligands, fluorophores and blood brain barrier-transporters for diagnosis and therapy of Alzheimer’s disease. Different amyloid-beta ligands will be synthesized and their ability to interact with amyloid-beta plaques will be studied with nuclear magnetic resonance techniques and a process of lead optimization will be performed. Many natural and synthetic compounds able to interact as amyloid-beta ligands have been identified. Among them, a set of small molecules in which aromatic moieties seem to play a key role to inhibit amyloid-beta aggregation, in particular heteroaromatic polycyclic compounds such as tetracyclines. Nevertheless tetracyclines suffer from chemical instability, low water solubility and possess, in this contest, undesired anti-bacterial activity. In order to overcome these limitations, one of our goals is to synthesize tetracyclines analogues bearing a polycyclic structure with improved chemical stability and water solubility, possibly lacking antibacterial activity but conserving the ability to interact with amyloid-beta peptides. Known tetracyclines have in common a fourth cycle without an aromatic character and with different functionalisations. We aim to synthesize derivatives in which this cycle is represented by a sugar moiety, thus bearing different derivatisable positions or create derivatives in which we will increase or decrease the number of fused rings. In order to generate a potential drug-tool candidate, these molecules should also possess the correct chemical-physical characteristics. The glycidic moiety, not being directly involved in the binding, it assures further possible derivatizations, such as conjugation to others molecular entities (nanoparticles, polymeric supports, etc.), and functionalization with chemical groups able to modulate the hydro/lipophilicity. In order to be useful such compounds should perform their action within the brain, therefore they have to be able to cross the blood brain barrier, and to be somehow detected for diagnostic purposes.
Resumo:
Parkinson's disease is a chronic progressive neurodegenerative movement disorder characterized by a profound and selective loss of nigrostriatal dopaminergic neurons. Our findings demonstrated that glutamatergic system is impaired during PD. The evaluations of these damages have important implications in understanding the molecular mechanism underlying motor, cognitive and memory deficits in PD. Our results showed a significant increase of glutamate content in the brain regions of 6- OHDA infused rat compared to control. This increased glutamate content caused an increase in glutamatergic and NMDA receptors function. Glutamate receptor subtypes- NMDAR1, NMDA2B and mGluR5 have differential regulatory role in different brain regions during PD. The second messenger studies confirmed that the changes in the receptor levels alter the IP3, cAMP and cGMP content. The alteration in the second messengers level increased the expression of pro-apoptotic factors - Bax and TNF-α, intercellular protein - α-synuclein and reduced the expression of transcription factor - CREB. These neurofunctional variations are the key contributors to motor and cognitive abnormalities associated with PD. Nestin and GFAP expression study confirmed that 5-HT and GABA induced the differentiation and proliferation of the BMC to neurons and glial cells in the SNpc of rats. We also observed that activated astrocytes are playing a crucial role in the proliferation of transplanted BMC which makes them significant for stem cell-based therapy. Our molecular and behavioural results showed that 5-HT and GABA along with BMC potentiates a restorative effect by reversing the alterations in glutamate receptor binding, gene expression and behaviour abnormality that occur during PD. The therapeutic significance in Parkinson’s disease is of prominence.
Resumo:
Parkinson’s disease is a chronic progressive neurodegenerative disorder characterized by the selective loss of dopaminergic neurons in the SNpc resulting in severe motor impairments. Serotonergic system plays an important regulatory role in the pathophysiology of PD in rats, the evaluation of which provides valuable insight on the underlying mechanisms of motor, cognitive and memory deficits in PD. We observed a decrease in 5-HT content in the brain regions of 6-OHDA infused rat compared to control. The decreased 5-HT content resulted in a decrease of total 5-HT, 5-HT2A receptors and 5-HTT function and an increase of 5-HT2C receptor function. 5-HT receptor subtypes - 5-HT2A and 5-HT2C receptors have differential regulatory role on the modulation of DA neurotransmission in different brain regions during PD. Our observation of impaired serotonergic neurotransmission in SNpc, corpus striatum, cerebral cortex, hippocampus, cerebellum and brain stem demonstrate that although PD primarily results from neurodegeneration in the SNpc, the associated neurochemical changes in other areas of the brain significantly contributes to the different motor and non motor symptoms of PD. The antioxidant enzymes – SOD, CAT and GPx showed significant down regulation which indicates increased oxidative damage resulting in neurodegeneration. We also observed an increase in the level of lipid peroxidation. Reduced expression of anti-apoptotic Akt and enhanced expression of NF-B resulting from oxidative stress caused an activation of caspase-8 thus leading the cells to neurodegeneration by apoptosis. BMC administration in combination with 5-HT and GABA to PD rats showed reversal of the impaired serotonergic neurotransmission and oxidative stress mediated apoptosis. The transplanted BMC expressed NeuN confirming that 5-HT and GABA induced the differentiation and proliferation of BMC to neurons in the SNpc along with an increase in DA content and an enhanced expression of TH. Neurotrophic factors – BDNF and GDNF rendered neuroprotective effects accompanied by improvement in behavioural deficits indicating a significant reversal of altered dopaminergic and serotonergic neurotransmission in PD. The restorative and neuroprotective effects of BMC in combination with 5-HT and GABA are of immense therapeutic significance in the clinical management of PD.
Resumo:
A matriz extracelular (MEC) desempenha um papel importante em lesões hepáticas crônicas e tem sido estudada em modelos de intoxicação experimental. em bovinos, no entanto, não há estudos específicos sobre a MEC hepática normal ou com lesões crônicas. Por isso, foi desenvolvido um modelo de intoxicação experimental hepático usando Senecio brasilliensis, uma planta que contém alcalóides pirrolizidínicos e causa lesão hepática dependente da dose. Cinco bezerros receberam por via oral, 0.38g/kg de folhas secas por 24 dias. Biópsias hepáticas foram obtidas a cada 15 dias durante 60 dias. Sinais clínicos de complicações digestivas surgiram da terceira semana do experimento. Um bezerro morreu aos 45 dias e os outros quatro foram avaliados até os 60 dias. As biópsias hepáticas foram processadas para microscopia óptica, imuno-histoquímica e microscopia eletrônica de transmissão. No trigésimo dia, as lesões hepáticas eram progessivas caracterizadas por vacuolização hepatocelular, necrose, apoptose, megalocitose, e fibrose centrolobular, pericelular e portal. Foram realizadas avaliações quantitativas e semi-quantitativas de componentes da MEC hepática antes e após o aparecimento das lesões. Foi realizada morfometria do colágeno total e do sistema de fibras elásticas. Colágeno total e colágenos tipos I e III aumentaram progressivamente em todos os locais do fígado. Mudanças na localização, quantidade e disposição do sistema de fibras elásticas foram também observadas. Houve um aumento significativo de células de Kupffer aos 30 dias e de células sinusoidais totais aos 45 e 60 dias. As lesões hepáticas neste experimento foram progressivas mesmo após a remoção da planta. Lesões de fibrose severa foram localizadas principalmente nos espaços porta, seguido por fibrose veno-oclusiva e pericelular. Os colágenos tipo I e tipo III foram observados no fígado normal e no fígado dos bezerros afetados, com predomínio do tipo I. Nos bezerros afetados o aumento do colágeno total e do sistema de fibras elásticas foi paralelo ao aumento no número das células sinusoidais.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Two Quarter Horse mares with hereditary equine regional dermal asthenia (HERDA) were diagnosed with metastatic squamous cell carcinoma (SCC) associated with chronic nonhealing wounds. The lesions were similar to the development of SCC from chronic nonhealing ulcers, known as Marjolin's ulcers in humans. The horses showed recurrent skin wounds in the saddle and paralumbar regions and were confirmed by molecular techniques as having HERDA. Both horses were maintained as research animals for prolonged periods and received regular veterinary care and wound treatment. Both horses were ultimately euthanized because of their chronic progressive wounds, coupled with declining health. At necropsy, the nonhealing wounds were found to be complicated by infiltrative SCC; both horses had metastasis to lungs. Chronically inflamed, recurrent skin wounds that heal slowly and incompletely as a consequence of HERDA are proposed as a major pathogenetic factor in tumorigenesis. Consistent findings with respect to proliferation index (Ki-67) and mutations of p53 tumor suppressor gene were confirmed by immunohistochemistry in one horse. SCC consistent with Marjolin's ulcer has been previously suggested in association with chronic ulcers or burn scars in horses, but this is the first report of an association with chronic poor healing wounds in HERDA horses. © 2013 Elsevier Inc.