996 resultados para Chronic Hypobaric Hypoxia
Resumo:
The presence of an intrinsic renin-angiotensin system (RAS) in the rat epididymis has been previously established by showing the expression of several key RAS components, and in particular angiotensinogen, the indispensable element for the intracellular generation of angiotensin II. In this study, the possible involvement of this local epididymal RAS in the testicular effects of chronic hypoxia was investigated. Semi-quantitative reverse-transcription polymerase chain reaction (RT-PCR), Western blotting and by in situ hybridization histochemistry of the rat epididymis were used to show changes in localization and expression of angiotensinogen. Results from RT-PCR analysis demonstrated that chronic hypoxia caused a marked decrease (60%) in the expression of angiotensinogen mRNA, when compared with that in the normoxic epididymis. Western blot analysis demonstrated a less decrease (35%) in the expression of angiotensinogen protein. In situ hybridization histochemistry showed that the reduced angiotensinogen mRNA in chronic hypoxia was specifically localized to the epididymal epithelium from the cauda, corpus and caput regions of the epididymis; a distribution similar to that of normoxic rats. It was concluded that chronic hypoxia decreases the transcriptional and translational expression of angiotensinogen, and thus local formation of angiotensin II, in the rat epididymis. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Increased pulmonary artery pressure is a well-known phenomenon of hypoxia and is seen in patients with chronic pulmonary diseases, and also in mountaineers on high altitude expedition. Different mediators are known to regulate pulmonary artery vessel tone. However, exact mechanisms are not fully understood and a multimodal process consisting of a whole panel of mediators is supposed to cause pulmonary artery vasoconstriction. We hypothesized that increased hypoxemia is associated with an increase in vasoconstrictive mediators and decrease of vasodilatators leading to a vasoconstrictive net effect. Furthermore, we suggested oxidative stress being partly involved in changement of these parameters. Oxygen saturation (Sao2) and clinical parameters were assessed in 34 volunteers before and during a Swiss research expedition to Mount Muztagh Ata (7549 m) in Western China. Blood samples were taken at four different sites up to an altitude of 6865 m. A mass spectrometry-based targeted metabolomic platform was used to detect multiple parameters, and revealed functional impairment of enzymes that require oxidation-sensitive cofactors. Specifically, the tetrahydrobiopterin (BH4)-dependent enzyme nitric oxide synthase (NOS) showed significantly lower activities (citrulline-to-arginine ratio decreased from baseline median 0.21 to 0.14 at 6265 m), indicating lower NO availability resulting in less vasodilatative activity. Correspondingly, an increase in systemic oxidative stress was found with a significant increase of the percentage of methionine sulfoxide from a median 6% under normoxic condition to a median level of 30% (p<0.001) in camp 1 at 5533 m. Furthermore, significant increase in vasoconstrictive mediators (e.g., tryptophan, serotonin, and peroxidation-sensitive lipids) were found. During ascent up to 6865 m, significant altitude-dependent changes in multiple vessel-tone modifying mediators with excess in vasoconstrictive metabolites could be demonstrated. These changes, as well as highly significant increase in systemic oxidative stress, may be predictive for increase in acute mountain sickness score and changes in Sao2.
Resumo:
In the present study, we evaluated the mechanisms underpinning the hypertension observed in freely moving juvenile rats submitted to chronic intermittent hypoxia (CIH). Male juvenile Wistar rats (20-21 days old) were submitted to CIH (6% O(2) for 40 s every 9 min, 8 h day(-1)) for 10 days while control rats were maintained in normoxia. Prior to CIH, baseline systolic arterial pressure (SAP), measured indirectly, was similar between groups (86 +/- 1 versus 87 +/- 1 mmHg). After exposure to CIH, SAP recorded directly was higher in the CIH (n = 28) than in the control group (n = 29; 131 +/- 3 versus 115 +/- 2 mmHg, P < 0.05). This higher SAP of CIH rats presented an augmented power of oscillatory components at low (10.05 +/- 0.91 versus 5.02 +/- 0.63 mmHg(2), P < 0.05) and high (respiratory-related) frequencies (12.42 +/- 2.46 versus 3.28 +/- 0.61 mmHg(2), P < 0.05) in comparison with control animals. In addition, rats exposed to CIH also exhibited an increased cardiac baroreflex gain (-3.11 +/- 0.08 versus -2.1 +/- 0.10 beats min(-1) mmHg(-1), P < 0.0001), associated with a shift to the right of the operating point, in comparison with control rats. Administration of hexamethonium (ganglionic blocker, i.v.), injected after losartan (angiotensin II type 1 receptor antagonist) and [beta-mercapto-beta,beta-cyclopenta-methylenepropionyl(1), O-Me-Tyr(2), Arg(8)]-vasopressin (vasopressin type 1a receptor antagonist), produced a larger depressor response in the CIH (n = 8) than in the control group (n = 9; -49 +/- 2 versus -39 +/- 2 mmHg, P < 0.05). Fifteen days after the cessation of exposure to CIH, the mean arterial pressure of CIH rats returned to normal levels. The data indicate that the sympathetic-mediated hypertension observed in conscious juvenile rats exposed to CIH is not secondary to a reduction in cardiac baroreflex gain and exhibits a higher respiratory modulation, indicating that an enhanced respiratory-sympathetic coupling seems to be the major factor contributing to hypertension in rats exposed to CIH.
Resumo:
Chronic intermittent hypoxia (CIH) in rats produces changes in the central regulation of cardiovascular and respiratory systems by unknown mechanisms. We hypothesized that CIH (6% O(2) for 40 s, every 9 min, 8 h day(-1)) for 10 days alters the central respiratory modulation of sympathetic activity. After CIH, awake rats (n = 14) exhibited higher levels of mean arterial pressure than controls (101 +/- 3 versus 89 +/- 3 mmHg, n = 15, P < 0.01). Recordings of phrenic, thoracic sympathetic, cervical vagus and abdominal nerves were performed in the in situ working heart-brainstem preparations of control and CIH juvenile rats. The data obtained in CIH rats revealed that: (i) abdominal (Abd) nerves exhibited an additional burst discharge in late expiration; (ii) thoracic sympathetic nerve activity (tSNA) was greater during late expiration than in controls (52 +/- 5 versus 40 +/- 3%; n = 11, P < 0.05; values expressed according to the maximal activity observed during inspiration and the noise level recorded at the end of each experiment), which was not dependent on peripheral chemoreceptors; (iii) the additional late expiratory activity in the Abd nerve correlated with the increased tSNA; (iv) the enhanced late expiratory activity in the Abd nerve unique to CIH rats was accompanied by reduced post-inspiratory activity in cervical vagus nerve compared to controls. The data indicate that CIH rats present an altered pattern of central sympathetic-respiratory coupling, with increased tSNA that correlates with enhanced late expiratory discharge in the Abd nerve. Thus, CIH alters the coupling between the central respiratory generator and sympathetic networks that may contribute to the induced hypertension in this experimental model.
Resumo:
RESUMO: A hipertensão arterial (HA) é uma patologia altamente prevalente, embora claramente subdiagnosticada, em doentes com síndrome de apneia obstrutiva do sono (SAOS). Estas duas patologias apresentam uma estreita relação e a monitorização ambulatória da pressão arterial (MAPA), por um período de 24 horas, parece ser o método mais preciso para o diagnóstico de hipertensão em doentes com SAOS. No entanto, esta ferramenta de diagnóstico para além de ser dispendiosa e envolver um número acrescido de meios técnicos e humanos, é mais morosa e, por conseguinte, não é utilizada por rotina no contexto do diagnóstico da SAOS. Por outro lado, apesar da aplicação de pressão positiva contínua nas vias aéreas (CPAP – Continous Positive Airway Pressure) ser considerada a terapêutica de eleição para os doentes com SAOS, o seu efeito no abaixamento da pressão arterial (PA) parece ser modesto, exigindo, por conseguinte, a implementação concomitante de terapêutica anti-hipertensora. Acontece que são escassos os dados relativos aos regimes de fármacos anti-hipertensores utilizados em doentes com SAOS e, acresce ainda que, as guidelines terapêuticas para o tratamento farmacológico da HA, neste grupo particular de doentes, permanecem, até ao momento, inexistentes. A utilização de modelos animais de hipóxia crónica intermitente (CIH), que mimetizam a HA observada em doentes com SAOS, revela-se extremamente importante, uma vez que se torna imperativo identificar fármacos que promovam um controle adequado da PA neste grupo de doentes. No entanto, estudos concebidos com o intuito de investigar o efeito anti-hipertensor dos fármacos neste modelo animal revelam-se insuficientes e, por outro lado, os escassos estudos que testaram fármacos anti-hipertensores neste modelo não foram desenhados para responder a questões de natureza farmacológica. Acresce ainda que se torna imprescindível garantir a escolha de um método para administração destes fármacos que seja não invasivo e que minimize o stress do animal. Embora a gavagem seja uma técnica indiscutivelmente eficaz e amplamente utilizada para a administração diária de fármacos a animais de laboratório, ela compreende uma sequência de procedimentos geradores de stress para os animais e, que podem por conseguinte, constituir um viés na interpretação dos resultados obtidos. O objectivo global da presente investigação translacional foi contribuir para a identificação de fármacos anti-hipertensores mais efectivos para o tratamento da HT nos indivíduos com SAOS e investigar mecanismos subjacentes aos efeitos sistémicos associadas à SAOS bem como a sua modulação por fármacos anti-hipertensores. Os objectivos específicos foram: em primeiro lugar,encontrar novos critérios, baseados nas medidas antropométricas, que permitam a identificação de doentes com suspeita de SAOS, que erroneamente se auto-classifiquem como nãohipertensos, e desta forma promover um uso mais criterioso do MAPA; em segundo lugar, investigar a existência de uma hipotética associação entre os esquemas de fármacos antihipertensores e o controle da PA (antes e após a adaptação de CPAP) em doentes com SAOS em terceiro lugar, avaliar a eficácia do carvedilol (CVD), um fármaco bloqueador β-adrenérgico não selectivo com actividade antagonista α1 intrínseca e propriedades anti-oxidantes num modelo animal de hipertensão induzida pela CIH; em quarto lugar, explorar os efeitos da CIH sobre o perfil farmacocinético do CVD; e, em quinto lugar, investigar um método alternativo à gavagem para a administração crónica de fármacos anti-hipertensores a animais de laboratório. Com este intuito, na primeira fase deste projecto, fizemos uso de uma amostra com um número apreciável de doentes com SAOS (n=369), que acorreram, pela primeira vez, à consulta de Patologia do Sono do CHLN e que foram submetidos a um estudo polissonográfico do sono, à MAPA e que preencheram um questionário que contemplava a obtenção de informação relativa ao perfil da medicação anti-hipertensora em curso. Numa segunda fase, utilizámos um modelo experimental de HT no rato induzida por um paradigma de CIH. Do nosso trabalho resultaram os seguintes resultados principais: em primeiro lugar, o índice de massa corporal (IMC) e o perímetro do pescoço (PP) foram identificados como preditores independentes de “auto-classificação errónea” da HA em doentes com suspeita de SAOS; em segundo lugar, não encontramos qualquer associação com significado estatístico entre os vários esquemas de fármacos anti-hipertensores bem como o número de fármacos incluídos nesse esquemas, e o controle da PA (antes e depois da adaptação do CPAP); em terceiro lugar, apesar das doses de 10, 30 e 50 mg/kg de carvedilol terem promovido uma redução significativa da frequência cardíaca, não foi observado qualquer decréscimo na PA no nosso modelo animal; em quarto lugar, as razões S/(R+S) dos enantiómeros do CVD nos animais expostos à CIH e a condições de normóxia revelaram-se diferentes; e, em quinto lugar, a administração oral voluntária mostrou ser um método eficaz para a administração diária controlada de fármacos anti-hipertensores e que é independente da manipulação e contenção do animal. Em conclusão, os resultados obtidos através do estudo clínico revelaram que o controle da PA, antes e após a adaptação do CPAP, em doentes com SAOS é independente, quer do esquema de fármacos anti-hipertensores, quer do número de fármacos incluídos num determinado esquema. Os nossos resultados salientam ainda a falta de validade da chamada self-reported hypertension e sugerem que em todos os doentes com suspeita de SAOS, com HA não diagnosticada e com um IMC e um PP acima de 27 kg/m2 e 39 cm, respectivamente, a confirmação do diagnóstico de HA deverá ser realizada através da MAPA, ao invés de outros métodos que com maior frequência são utilizados com este propósito. Os resultados obtidos no modelo animal de HA induzida pela CIH sugerem que o bloqueio do sistema nervoso simpático, juntamente com os supostos efeitos pleiotrópicos do CVD, não parece ser a estratégia mais adequada para reverter este tipo particular de hipertensão e indicam que as alterações farmacocinéticas induzidas pela CIH no ratio S/(R+S) não justificam a falta de eficácia anti-hipertensora do CVD observada neste modelo animal. Por último, os resultados do presente trabalho suportam ainda a viabilidade da utilização da administração oral voluntária, em alternativa à gavagem, para a administração crónica de uma dose fixa de fármacos anti-hipertensores.---------------------------- ABSTRACT: Hypertension (HT) is a highly prevalent condition, although under diagnosed, in patients with obstructive sleep apnea (OSA). These conditions are closely related and 24-hour ambulatory blood pressure monitoring (ABPM) seems to be the most accurate measurement for diagnosing hypertension in OSA. However, this diagnostic tool is expensive and time-consuming and, therefore, not routinely used. On the other hand, although continuous positive airway pressure (CPAP) is considered the gold standard treatment for symptomatic OSA, its lowering effect on blood pressure (BP) seems to be modest and, therefore, concomitant antihypertensive therapy is still required. Data on antihypertensive drug regimens in patients with OSA are scarce and specific therapeutic guidelines for the pharmacological treatment of hypertension in these patients remain absent. The use of animal models of CIH, which mimic the HT observed in patients with OSA, is extremely important since it is imperative to identify preferred compounds for an adequate BP control in this group of patients. However, studies aimed at investigating the antihypertensive effect of antihypertensive drugs in this animal model are insufficient, and most reports on CIH animal models in which drugs have been tested were not designed to respond to pharmacological issues. Moreover, when testing antihypertensive drugs (AHDs) it becomes crucial to ensure the selection of a non-invasive and stress-free method for drug delivery. Although gavage is effective and a widely performed technique for daily dosing in laboratory rodents, it comprises a sequence of potentially stressful procedures for laboratory animals that may constitute bias for the experimental results. The overall goal of the present translational research was to contribute to identify more effective AHDs for the treatment of hypertension in patients with OSA and investigate underlying mechanisms of systemic effects associated with OSA, as well as its modulation by AHDs. The specific aims were: first, to find new predictors based on anthropometric measures to identify patients that misclassify themselves as non-hypertensive, and thereby promote the selective use of ABPM; second, to investigate a hypothetical association between ongoing antihypertensive regimens and BP control rates in patients with OSA, before and after CPAP adaptation; third, to determine, in a rat model of CIH-induced hypertension, the efficacy of carvedilol (CVD), a nonselective beta-blocker with intrinsic anti-α1-adrenergic activity and antioxidant properties; fourth, to explore the effects of CIH on the pharmacokinetics profile of CVD and fifth, to investigate an alternative method to gavage, for chronic administration of AHDs to laboratory rats. For that, in the first phase of this project, we used a sizeable sample of patients with OSA (n=369), that attended a first visit at Centro Hospitalar Lisboa Norte, EPE Sleep Unit, and underwent overnight polysomnography, 24-h ABPM and filled a questionnaire that included ongoing antihypertensive medication profile registration. In the second phase, a rat experimental model of HT induced by a paradigm of CIH that simulates OSA was used. The main findings of this work were: first, body mass index (BMI) and neck circumference (NC) were identified as independent predictors of hypertension misclassification in patients suspected of OSA; second, in patients with OSA, BP control is independent of both the antihypertensive regimen and the number of antihypertensive drugs, either before or after CPAP adaptation; third, although the doses of 10, 30 and 50 mg/Kg of CVD promoted a significant reduction in heart rate, no decrease in mean arterial pressure was observed; fourth, the S/(R+S) ratios of CVD enantiomers, between rats exposed to CIH and normoxic conditions, were different and fifth, voluntary ingestion proved to be an effective method for a controlled daily dose administration, with a define timetable, that is independent of handling and restraint procedures. In conclusion, the clinical study showed that BP control in OSA patients is independent of both the antihypertensive regimen and the number of antihypertensive drugs. Additionally, our results highlight the lack of validity of self-reported hypertension and suggest that all patients suspected of OSA with undiagnosed hypertension and with a BMI and NC above 27 Kg/m2 and 39 cm should be screened for hypertension, through ABPM. The results attained in the rat model of HT related to CIH suggest that the blockade of the sympathetic nervous system together with the putative pleiotropic effects of carvedilol is not able to revert hypertension induced by CIH and point out that the pharmacokinetic changes induced by CIH on S/(R+S) ratio are not apparently responsible for the lack of efficacy of carvedilol in reversing this particular type of hypertension. Finally, the results here presented support the use of voluntary oral administration as a viable alternative to gavage for chronic administration of a fixed dose of AHDs.
Resumo:
An understanding of human responses to hypoxia is important for the health of millions of people worldwide who visit, live, or work in the hypoxic environment encountered at high altitudes. In spite of dozens of studies over the last 100 years, the basic mechanisms controlling acclimatization to hypoxia remain largely unknown. The AltitudeOmics project aimed to bridge this gap. Our goals were 1) to describe a phenotype for successful acclimatization and assess its retention and 2) use these findings as a foundation for companion mechanistic studies. Our approach was to characterize acclimatization by measuring changes in arterial oxygenation and hemoglobin concentration [Hb], acute mountain sickness (AMS), cognitive function, and exercise performance in 21 subjects as they acclimatized to 5260 m over 16 days. We then focused on the retention of acclimatization by having subjects reascend to 5260 m after either 7 (n = 14) or 21 (n = 7) days at 1525 m. At 16 days at 5260 m we observed: 1) increases in arterial oxygenation and [Hb] (compared to acute hypoxia: PaO2 rose 9±4 mmHg to 45±4 while PaCO2 dropped a further 6±3 mmHg to 21±3, and [Hb] rose 1.8±0.7 g/dL to 16±2 g/dL; 2) no AMS; 3) improved cognitive function; and 4) improved exercise performance by 8±8% (all changes p<0.01). Upon reascent, we observed retention of arterial oxygenation but not [Hb], protection from AMS, retention of exercise performance, less retention of cognitive function; and noted that some of these effects lasted for 21 days. Taken together, these findings reveal new information about retention of acclimatization, and can be used as a physiological foundation to explore the molecular mechanisms of acclimatization and its retention.
Resumo:
We investigated the changes in both performance and selected physiological parameters following a Live High-Train Low (LHTL) altitude camp in either normobaric hypoxia (NH) or hypobaric hypoxia (HH) replicating current "real" practices of endurance athletes. Well-trained triathletes were split into two groups (NH, n = 14 and HH, n = 13) and completed an 18-d LHTL camp during which they trained at 1100-1200 m and resided at an altitude of 2250 m (PiO2 = 121.7±1.2 vs. 121.4±0.9 mmHg) under either NH (hypoxic chamber; FiO2 15.8±0.8%) or HH (real altitude; barometric pressure 580±23 mmHg) conditions. Oxygen saturations (SpO2) were recorded continuously daily overnight. PiO2 and training loads were matched daily. Before (Pre-) and 1 day after (Post-) LHTL, blood samples, VO2max, and total haemoglobin mass (Hbmass) were measured. A 3-km running test was performed near sea level twice before, and 1, 7, and 21 days following LHTL. During LHTL, hypoxic exposure was lower for the NH group than for the HH group (220 vs. 300 h; P<0.001). Night SpO2 was higher (92.1±0.3 vs. 90.9±0.3%, P<0.001), and breathing frequency was lower in the NH group compared with the HH group (13.9±2.1 vs. 15.5±1.5 breath.min-1, P<0.05). Immediately following LHTL, similar increases in VO2max (6.1±6.8 vs. 5.2±4.8%) and Hbmass (2.6±1.9 vs. 3.4±2.1%) were observed in NH and HH groups, respectively, while 3-km performance was not improved. However, 21 days following the LHTL intervention, 3-km run time was significantly faster in the HH (3.3±3.6%; P<0.05) versus the NH (1.2±2.9%; ns) group. In conclusion, the greater degree of race performance enhancement by day 21 after an 18-d LHTL camp in the HH group was likely induced by a larger hypoxic dose. However, one cannot rule out other factors including differences in sleeping desaturations and breathing patterns, thus suggesting higher hypoxic stimuli in the HH group.
Resumo:
[This corrects the article DOI: 10.1371/journal.pone.0114418.].
Resumo:
PURPOSE: We investigated the changes in physiological and performance parameters after a Live High-Train Low (LHTL) altitude camp in normobaric (NH) or hypobaric hypoxia (HH) to reproduce the actual training practices of endurance athletes using a crossover-designed study. METHODS: Well-trained triathletes (n = 16) were split into two groups and completed two 18-day LTHL camps during which they trained at 1100-1200 m and lived at 2250 m (P i O2 = 111.9 ± 0.6 vs. 111.6 ± 0.6 mmHg) under NH (hypoxic chamber; FiO2 18.05 ± 0.03%) or HH (real altitude; barometric pressure 580.2 ± 2.9 mmHg) conditions. The subjects completed the NH and HH camps with a 1-year washout period. Measurements and protocol were identical for both phases of the crossover study. Oxygen saturation (S p O2) was constantly recorded nightly. P i O2 and training loads were matched daily. Blood samples and VO2max were measured before (Pre-) and 1 day after (Post-1) LHTL. A 3-km running-test was performed near sea level before and 1, 7, and 21 days after training camps. RESULTS: Total hypoxic exposure was lower for NH than for HH during LHTL (230 vs. 310 h; P < 0.001). Nocturnal S p O2 was higher in NH than in HH (92.4 ± 1.2 vs. 91.3 ± 1.0%, P < 0.001). VO2max increased to the same extent for NH and HH (4.9 ± 5.6 vs. 3.2 ± 5.1%). No difference was found in hematological parameters. The 3-km run time was significantly faster in both conditions 21 days after LHTL (4.5 ± 5.0 vs. 6.2 ± 6.4% for NH and HH), and no difference between conditions was found at any time. CONCLUSION: Increases in VO2max and performance enhancement were similar between NH and HH conditions.
Resumo:
BACKGROUND: Circulating progenitor cells (CPC) treatments may have great potential for the recovery of neurons and brain function. OBJECTIVE: To increase and maintain CPC with a program of exercise, muscle electro-stimulation (ME) and/or intermittent-hypobaric-hypoxia (IHH), and also to study the possible improvement in physical or psychological functioning of participants with Traumatic Brain Injury (TBI). METHODS: Twenty-one participants. Four groups: exercise and ME group (EEG), cycling group (CyG), IHH and ME group (HEG) and control group (CG). Psychological and physical stress tests were carried out. CPC were measured in blood several times during the protocol. RESULTS: Psychological tests did not change. In the physical stress tests the VO2 uptake increased in the EEG and the CyG, and the maximal tolerated workload increased in the HEG. CPC levels increased in the last three weeks in EEG, but not in CyG, CG and HEG. CONCLUSIONS: CPC levels increased in the last three weeks of the EEG program, but not in the other groups and we did not detect performed psychological test changes in any group. The detected aerobic capacity or workload improvement must be beneficial for the patients who have suffered TBI, but exercise type and the mechanisms involved are not clear.