1000 resultados para Chronic Ethanol


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ethanol consumption damages the prostate, and testosterone is known by anti-inflammatory role. The cytokines were investigated in the plasma and ventral prostate of UChB rats submitted or not to testosterone therapy by ELISA and Western blot, respectively. Additionally, inflammatory foci and mast cells were identified in the ventral prostate slides stained by hematoxylin and eosin and toluidine blue, respectively. Inflammatory foci were found in the ethanol-treated animals and absent after testosterone therapy. Plasma levels of IL-6 and IL-10 were not changed while TNFα and TFG-β1 were increased in the animals submitted testosterone therapy. Regarding to ventral prostate, IL-6 did not alter, while IL-10, TNFα, and TFG-β1 were increased after testosterone therapy. Ethanol increases NFR2 in addition to high number of intact and degranulated mast cell which were reduced after testosterone therapy. So, ethanol and testosterone differentially modulates the cytokines in the plasma and prostate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and purpose: The contribution of endothelin-1 (ET-1) to vascular hyper-reactivity associated with chronic ethanol intake, a major risk factor in several cardiovascular diseases, remains to be investigated. Experimental approach: The biphasic haemodynamic responses to ET-1 (0.01-0.1 nmol kg(-1), i.v.) or to the selective ET(B) agonist, IRL1620 (0.001-1.0 nmol kg(-1), i.v.), with or without ET(A) or ET(B) antagonists (BQ123 (c(DTrp-Dasp-Pro-Dval-Leu)) at 1 and 2.5 mg kg(-1) and BQ788 (N-cis-2,6-dimethyl-piperidinocarbonyl-L-gamma-methylleucyl1-D-1methoxycarbonyltryptophanyl-D-norleucine) at 0.25 mg kg(-1), respectively) were tested in anaesthetized rats, after 2 weeks` chronic ethanol treatment. Hepatic parameters and ET receptor protein levels were also determined. Key results: The initial hypotensive responses to ET-1 or IRL1620 were unaffected by chronic ethanol intake, whereas the subsequent pressor effects induced by ET-1, but not by IRL1620, were potentiated. BQ123 at 2.5 but not 1 mg kg(-1) reduced the pressor responses to ET-1 in ethanol-treated rats. Conversely, BQ788 (0.25 mg kg(-1)) potentiated ET-1-induced increases in mean arterial blood pressure in control as well as in ethanol-treated rats. Interestingly, in the latter group, increases in heart rate, induced by ET-1 at a dose of 0.025 mg kg(-1) were enhanced following ET(B) receptor blockade. Finally, we observed higher levels of ET(A) receptor in the heart and mesenteric artery and a reduction of ET(B) receptor protein levels in the aorta and kidney from rats chronically treated with ethanol. Conclusions and implications: Increased vascular reactivity to ET-1 and altered protein levels of ET(A) and ET(B) receptors could play a role in the pathogenesis of cardiovascular complications associated with chronic ethanol consumption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and purpose: Epidemiological data suggest that the risk of ethanol-associated cardiovascular disease is greater in men than in women. This study investigates the mechanisms underlying gender-specific vascular effects elicited by chronic ethanol consumption in rats. Experimental approach: Vascular reactivity experiments using standard muscle bath procedures were performed on isolated thoracic aortae from rats. mRNA and protein for inducible NO synthase (iNOS) and for endothelial NOS (eNOS) was assessed by RT-PCR or western blotting, respectively. Key results: In male rats, chronic ethanol consumption enhanced phenylephrine-induced contraction in both endothelium-intact and denuded aortic rings. However, in female rats, chronic ethanol consumption enhanced phenylephrine-induced contraction only in endothelium denuded aortic rings. After pre-incubation of endothelium-intact rings with L-NAME, both male and female ethanol-treated rats showed larger phenylephrine-induced contractions in aortic rings, compared to the control group. Acetylcholine-induced relaxation was not affected by ethanol consumption. The effects of ethanol on responses to phenylephrine were similar in ovariectomized (OVX) and intact (non-OVX) female rats. In the presence of aminoguanidine, but not 7-nitroindazole, the contractions to phenylephrine in rings from ethanol-treated female rats were greater than that found in control tissues in the presence of the inhibitors. mRNA levels for eNOS and iNOS were not altered by ethanol consumption. Ethanol intake reduced eNOS protein levels and increased iNOS protein levels in aorta from female rats. Conclusions and implications: Gender differences in the vascular effects elicited by chronic ethanol consumption were not related to ovarian hormones but seemed to involve the upregulation of iNOS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent research has focused on the N-methyl-D-aspartate receptor system as a major site of ethanol action in the brain and specifically on compensatory changes in the expression of the polyamine-sensitive NR2B subunit. Therefore, we examined the effects of chronic ethanol treatment on polyamine homeostasis in the rat brain. Wistar rats were made dependent by ethanol vapor inhalation. This caused a rise in hippocampal ornithine decarboxylase (ODC) activity that was correlated with the appearance of physiological dependence. ODC activity returned to control levels within 3 days of ethanol withdrawal. Enzyme activity also increased in the cerebral cortex, striatum, and cerebellum of the ethanol-dependent rats. The concentration of the polyamines (putrescine, spermidine, and spermine) in the hippocampus was increased in ethanol-dependent rats. Injection of the ODC inhibitor, gamma-difluoromethylornithine (500 mg/kg) at the onset of withdrawal resulted in a significant reduction in the severity of withdrawal behaviors. The level of ODC activity and the severity of withdrawal behaviors were positively correlated. Perturbed polyamine homeostasis may represent an important molecular component in the initiation of ethanol withdrawal behaviors in the ethanol-dependent rat.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic ethanol exposure and subsequent withdrawal are known to change NMDA receptor activity. This study examined the effects of chronic ethanol administration and withdrawal on the expression of several NMDA receptor subunit and splice variant mRNAs in the rat cerebral cortex. Ethanol dependence was induced by ethanol vapour exposure. To delineate between seizure-induced changes in expression during withdrawal and those due to withdrawal per se, another group of naive rats was treated with pentylenetetrazol (PTZ) injection (30 mg/kg, i.p.). RNA samples from the cortices of chronically treated and withdrawing animals were compared to those from pairfed controls. Changes in NMDA receptor mRNA expression were determined using ribonuclease protection assays targetting the NR2A, -2B, -2C and NR1-pan subunits as well as the three alternatively spliced NR1 inserts (NR1-pan describes all the known NR1 splice variants generated from the 5' insert and the two 3' inserts). The ratio of NR1 mRNA incorporating the 5' insert vs, that lacking it was decreased during ethanol exposure and up to 48 h after withdrawal. NR2B mRNA expression was elevated during exposure, but returned to control levels 18 h after withdrawal. Levels of NR2A, NR2C, NR1-pan and both 3' NR1 insert mRNAs from the ethanol-treated groups did not alter compared with the pair-fed control group. No changes in the level of any NMDA receptor subunit mRNA was detected in the PTZ-treated animals. These data support the hypothesis that changes in NMDA receptor subunit composition may underlie a neuronal adaptation to the chronic ethanol-inhibition and may therefore be important in the precipitation of withdrawal hyperactivity. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study focused on the DNA-binding activity and protein expression of the transcription factors Egr-1 and Egr-3 in the rat brain cortex and hippocampus after chronic or acute ethanol exposure. DNA-binding activity was reduced in both regions after chronic ethanol exposure and was restored to the level of the pair-fed group at 16 h of withdrawal. Cortical Egr-1 protein levels were not altered by chronic ethanol exposure but increased 16 h after withdrawal, thus mirroring DNA-binding activity. In contrast, Egr-3 protein levels did not undergo any change. There was no change in the level of either protein in the hippocampus. Immunohistochemistry revealed a region-selective change in immunopositive cells in the cortex and hippocampus. Finally, an acute bolus dose of ethanol did not affect Egr DNA-binding activity and ethanol treatment did not alter the DNA-binding activity or protein levels of the transcription factor Spl. These observations suggest that chronic exposure to ethanol has region-selective effects on the DNA-binding activity and protein expression of Egr-1 and Egr-3 transcription factors in the rat brain. These changes occur after prolonged ethanol exposure and may thus reflect neuroadaptive changes associated with physical dependency and withdrawal. These effects are also transcription factor-selective. Clearly, protein expression is not the sole mediator of the changes in DNA-binding activity and chronic ethanol exposure must have effects on modulatory agents of Egr DNA-binding activity. (C) 2000 Elsevier Science Ltd, All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic exposure to ethanol may results in pathophysiologic changes in cellular function. The present work was designed to investigate the morphology of testis submitted to experimental ethanol ingestion. Experimental animals were divided into two groups. The control group (n = 23) received a solid diet and tap water and the alcoholic group (n = 23) received the same solid diet and ethanol P.A. diluted 20% in water (v/v). After 120 days of treatment, all animals were anesthetized, weighed and sacrificed. Testosterone and luteinizing hormone levels in serum were lower in the alcoholic group than in the control group. Histological and ultrastructural alterations were observed in the testicular alcoholic germinative cells like enormous spaces, lipid droplets accumulation, digestive vacuoles, irregular diameter of the seminiferous tubules and interstitial dilated blood vessels. It was concluded that 20% ethanol provokes lesions on the testis germinative epithelium probably inducing gonadal dysfunction. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxidative stress and lipid peroxidation, associated with ethanol, are considered important pathogenic mechanisms in the formation of hepatic steatosis. The objective of the present study was to assess the effects of supplementation with lecithin and vitamin E on the oxidatives stress and hepatic steatosis induced in rats by chronic ethanol consumption. Fifty-two Wistar rats were divided into 4 experimental groups: control (AIN-93 diet), ethanol group (control diet plus a 20% hydroalcoholic solution), ethanol + vitamin E group (addition of 0.6% vitamin E to the diet plus a 20% hydroalcoholic solution); ethanol + soy lecithin group (addition of 5 % soy lecithin to the diet plus a 20% hydroalcoholic solution). At the end of 4 weeks the animals were sacrificed. The results showed a significantly smaller number of animals (p < 0.05) classified as having a low degree of steatosis in the ethanol + vitamin E group and ethanol + soy lecithin group compared to the ethanol group. In addition, the ethanol + soy lecithin group had a significantly lower concentration of hepatic fat (p < 0.05) than the ethanol group. A significant reduction of hepatic TBARS concentration (p < 0.05) was detected in the ethanol + vitamin E group compared to the ethanol group. Hepatic carbonyl concentration was significantly lower in the ethanol + soy lecithin group. However, hepatic GSH was significantly lower in the ethanol + vitamin E and ethanol + soy lecithin groups compared to the control group. In conclusion, supplementation with lecithin and vitamin E attenuated the hepatotoxic effects of chronic ethanol intake and contributed to a reduction of the progression of steatosis status.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose - Chronic ethanol consumption induces lipid peroxidation by increasing free radicals or reducing antioxidants and may increase damage to hepatic DNA. Tannins are polyphenolic metabolites present in various plants and one of their effects is antioxidant activity that reduces lipoperoxidation, as is the case for vitamin E. This paper aims to assess the role of tannic acid and vitamin E in lipid peroxidation and in DNA damage in rats receiving ethanol. Design/methodology/approach - A total of 60 Wistar rats were divided into six groups: control + ethanol (0-24hs), tannic acid + ethanol (0-24 hs), and vitamin E + ethanol (0-24 hs). The animals were sacrificed immediately (0 hour) or 24 hours after a period of four weeks of ethanol administration and the following measurements were made: plasma vitamin E and liver glutathione, thiobarbituric acid resistant substances, and a-tocopherol. The comet test was also applied to hepatocytes. Findings - Ethanol administration led to an increase in DNA damage (148.67 +/- 15.45 versus 172.63 +/- 18.94) during a period of 24 hours which was not detected in the groups receiving tannic acid or vitamin E. Steatosis was lower in the groups receiving tannic acid. Originality/value - The paper highlights that antioxidant role of vitamin E and of tannic acid in biological systems submitted to oxidative stress should be reevaluated, especially regarding the protective role of tannic acid against hepatic steatosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES To investigate the effects of chronic ethanol consumption on nitric oxide (NO)-mediated relaxation in rat cavernosal smooth muscle (CSM). METHODS Male wistar rats were divided into 2 groups: control and ethanol. CSM obtained from both groups were mounted in organ chambers for measurement of isometric tension. Contraction of the strips was induced by electrical field stimulation (EFS, 1-32 Hertz) and phenylephrine. We also evaluated the effect of ethanol consumption on the relaxation induced by acetylcholine (0.01-1000 mu mol L(-1)), sodium nitroprusside (SNP, 0.01-1000 mu mol L(-1)), or EFS (1-32 Hz) in strips precontracted with phenylephrine (10 mu mol L(-1)). Blood ethanol, serum testosterone levels, and basal nitrate generation were determined. Immunoexpression of endothelial NO synthase (eNOS) and inducible NO synthase (iNOS) was also accessed. RESULTS Ethanol intake for 4 weeks significantly increased noradrenergic nerve-mediated contractions of CSM in response to EFS. The endothelium-dependent relaxation induced by acetylcholine decreased after the ethanol treatment. Ethanol consumption decreased serum testosterone levels but did not affect the nitrate levels on rat CSM. The mRNA and protein levels for eNOS and iNOS receptors were increased in CSM from ethanol-treated rats. CONCLUSIONS Ethanol consumption reduces endothelium-dependent relaxation induced by acetylcholine, but does not affect SNP or EFS-induced relaxation, suggesting that ethanol disrupts the endothelial function. Despite the overexpression of eNOS and iNOS in ethanol-treated rats, the impaired relaxation induced by acetylcholine may suggest that chronic ethanol consumption induces endothelial dysfunction. UROLOGY 74: 1250-1256, 2009. (C) 2009 Published by Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study investigated whether chronic ethanol (ETH) intake and subsequent ETH exposure of cell cultures affects osteoblast differentiation by evaluating key parameters of in vitro osteogenesis. Rats were treated with 5-20% (0.85-3.43 mM) ETH, increasing by 5% per week for a period of 4 weeks (habituation), after which the 20% level was maintained for 15 days (chronic intake). Bone-marrow stem cells from control (CONT) or ETH-treated rats were cultured in osteogenic medium which was either supplemented (ETH) or not supplemented (CONT) with 1.3 mm ethanol. Thus, four groups relating to rat treatment/culture supplementation were evaluated: (1) CONT/CONT, (2) ETH/CONT, (3) CONT/ETH and (4) ETH/ETH Cell morphology, proliferation and viability, total protein content, alkaline phosphatase (ALP) activity and bone-like nodule formation were evaluated. Chronic ethanol intake significantly reduced both food and liquid consumption and body weight gain. No difference was seen in cell morphology among treatments. Cell number was affected at 7 and 10 days as follows: CONT/CONT = CONT/ETH < ETH/CONT = ETH/ETH. Doubling time between 3 and 10 days was greater in groups of CONT animals: ETH/ETH = ETH/CONT < CONT/ETH = CONT/CONT. Cell viability and ALP activity were not affected by either animal treatment or culture exposure to ethanol. At day 21, the total protein content was affected as follows: ETH/ETH = CONT/ETH < ETH/CONT = CONT/CONT. Bone-like nodule formation was affected as follows: ETH/ETH < CONT/ETH < ETH/CONT < CONT/CONT. These results show that chronic ethanol intake, followed by the exposure of osteoblasts to ethanol, inhibited the differentiation of osteoblasts, as indicated by an increased proliferation rate and reduced bone-like nodule formation. Copyright (C) 2007 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hepatocytes from rats that were fed ethanol chronically for 6-8 wk were found to have a modest decrease in cytosolic GSH (24%) and a marked decrease in mitochondrial GSH (65%) as compared with pair-fed controls. Incubation of hepatocytes from ethanol-fed rats for 4 h in modified Fisher's medium revealed a greater absolute and fractional GSH efflux rate than controls with maintenance of constant cellular GSH, indicating increased net GSH synthesis. Inhibition of gamma-glutamyltransferase had no effect on these results, which indicates that no degradation of GSH had occurred during these studies. Enhanced fractional efflux was also noted in the perfused livers from ethanol-fed rats. Incubation of hepatocytes in medium containing up to 50 mM ethanol had no effect on cellular GSH, accumulation of GSH in the medium, or cell viability. Thus, chronic ethanol feeding causes a modest fall in cytosolic and a marked fall in mitochondrial GSH. Fractional GSH efflux and therefore synthesis are increased under basal conditions by chronic ethanol feeding, whereas the cellular concentration of GSH drops to a lower steady state level. Incubation of hepatocytes with ethanol indicates that it has no direct, acute effect on hepatic GSH homeostasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isolated hepatocytes incubated with [35S]-methionine were examined for the time-dependent accumulation of [35S]-glutathione (GSH) in cytosol and mitochondria, the latter confirmed by density gradient purification. In GSH-depleted and -repleted hepatocytes, the increase of specific activity of mitochondrial GSH lagged behind cytosol, reaching nearly the same specific activity by 1-2 h. However, in hepatocytes from ethanol-fed rats, the rate of increase of total GSH specific radioactivity in mitochondria was markedly suppressed. In in vivo steady-state experiments, the mass transport of GSH from cytosol to mitochondria and vice versa was 18 nmol/min per g liver, indicating that the half-life of mitochondrial GSH was approximately 18 min in controls. The fractional transport rate of GSH from cytosol to mitochondria, but not mitochondria to cytosol, was significantly reduced in the livers of ethanol-fed rats. Thus, ethanol-fed rats exhibit a decreased mitochondrial GSH pool size due to an impaired entry of cytosol GSH into mitochondria. Hepatocytes from ethanol-fed rats exhibited a greater susceptibility to the oxidant stress-induced cell death from tert-butylhydroperoxide. Incubation with glutathione monoethyl ester normalized the mitochondrial GSH and protected against the increased susceptibility to t-butylhydroperoxide, which was directly related to the lowered mitochondrial GSH pool size in ethanol-fed cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic ethanol feeding selectively impairs the translocation of cytosol GSH into the mitochondrial matrix. Since ethanol-induced liver cell injury is preferentially localized in the centrilobular area, we examined the hepatic acinar distribution of mitochondrial GSH transport in ethanol-fed rats. Enriched periportal (PP) and perivenous (PV) hepatocytes from pair- and ethanol-fed rats were prepared as well as mitochondria from these cells. The mitochondrial pool size of GSH was decreased in both PP and PV cells from ethanol-fed rats either as expressed per 10(6) cells or per microliter of mitochondrial matrix volume. The rate of reaccumulation of mitochondrial GSH and the linear relationship of mitochondrial to cytosol GSH from ethanol-fed mitochondria were lower for both PP and PV cells, effects observed more prominently in the PV cells. Mitochondrial functional integrity was lower in both PP and PV ethanol-fed rats, which was associated with decreased cellular ATP levels and mitochondrial membrane potential, effects which were greater in the PV cells. Mitochondrial GSH depletion by ethanol feeding preceded the onset of functional changes in mitochondria, suggesting that mitochondrial GSH is critical in maintaining a functionally competent organelle and that the greater depletion of mitochondrial GSH by ethanol feeding in PV cells could contribute to the pathogenesis of alcoholic liver disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alcoholic liver disease is mediated via activation of TLR4 signaling; MyD88-dependent and -independent signals are important contributors to injury in mouse models. Adiponectin, an anti-inflammatory adipokine, suppresses TLR4/MyD88-dependent responses via induction of heme oxygenase-1 (HO-1). Here we investigated the interactions between chronic ethanol, adiponectin, and HO-1 in regulation of TLR4/MyD88-independent signaling in macrophages and an in vivo mouse model. After chronic ethanol feeding, LPS-stimulated expression of IFN-β and CXCL10 mRNA was increased in primary cultures of Kupffer cells compared with pair-fed control mice. Treatment of Kupffer cells with globular adiponectin (gAcrp) normalized this response. LPS-stimulated IFN-β/CXCL10 mRNA and CXCL10 protein was also reduced in RAW 264.7 macrophages treated with gAcrp or full-length adiponectin. gAcrp and full-length adiponectin acted via adiponectin receptors 1 and 2, respectively. gAcrp decreased TLR4 expression in both Kupffer cells and RAW 264.7 macrophages. Small interfering RNA knockdown of HO-1 or inhibition of HO-1 activity with zinc protoporphyrin blocked these effects of gAcrp. C57BL/6 mice were exposed to chronic ethanol feeding, with or without treatment with cobalt protoporphyrin, to induce HO-1. After chronic ethanol feeding, mice were sensitized to in vivo challenge with LPS, expressing increased IFN-β/CXCL10 mRNA and CXCL10 protein in liver compared with control mice. Pretreatment with cobalt protoporphyrin 24 h before LPS challenge normalized this effect of ethanol. Adiponectin and induction of HO-1 potently suppressed TLR4-dependent/MyD88-independent cytokine expression in primary Kupffer cells from rats and in mouse liver after chronic ethanol exposure. These data suggest that induction of HO-1 may be a useful therapeutic strategy in alcoholic liver disease.