998 resultados para Chromosome loss


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thirty-eight tumors (five grade I-II astrocytomas, three grade III astrocytomas, four glioblastomas, one oligodendroglioma, four ependymomas, one pineocytoma, three medulloblastomas, four acoustic nerve neurinomas, one intraspinal neurinoma, one neurofibroma, 10 meningiomas, and one craniopharyngioma) and three benign lesions of the nervous system were evaluated cytogenetically after in vitro culture. Sex chromosome loss was detected in 56% of the cases (-X in 13 of the 25 female patients and -Y in nine of the 16 male patients). The objective of the present report was to study the role of this abnormality in cells of the nervous system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

B6D2F1 mice (45/group) were treated with N-butyl-N-(4- hydroxybutyl)nitrosamine (BBN) or uracil as follows: Group 1 received 0.05% BBN in drinking water for the entire experiment, Group 2 received 5 mg of BBN by gastric gavage in 0.1 mL of 20% ethanol twice per week for 10 wk, Group 3 received a 2.5% uracil-containing diet for the entire experiment, and Group 4 was controls (received 0.1 mL of 20% ethanol by gavage twice per week for 10 wk). The surviving mice in Group 1 were killed after week 26 and those in the other groups after week 30. By week 15, three of 11 Group 1 and one of 15 Group 2 mice had bladder carcinoma. By 26 and 30 wk, respectively, invasive carcinomas were observed in 33 of 34 and six of 21 mice in Groups 1 and 2 and renal pelvic carcinomas in 11 of 34 and three of 21 mice in Groups 1 and 2. Four of 19 uracil-treated mice had bladder nodular hyperplasia. By polymerase chain reaction-single-strand conformation polymorphism and sequence analyses, 16 of 20 and two of five bladder carcinomas from Groups 1 and 2, respectively, showed mutations in the p53 gene. Ha-ras mutation was present in one case. Loss of heterozygosity analysis with simple-sequence length polymorphism markers for chromosome 4 showed that 10 of 21, two of 15, and nine of 13 mice in Groups 1-3, respectively, had heterozygous or homozygous deletions. B6D2F1 mice are therefore susceptible to the urothelial carcinogenic effects of BBN and develop frequent p53 mutations and chromosome 4 deletions. Chromosome 4 deletions were also seen with uracil.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Loss of Y-chromosome has been correlated with older age in males. Furthermore, current evidence indicates that Y-chromosome loss also occurs in several human tumors, including head and neck carcinomas. However, the association between Y nullisomy and the occurrence of neoplasias in elderly men has not been well established. In the present study, the association between Y-chromosome loss and head and neck carcinomas was evaluated by comparison to cells from peripheral blood lymphocytes and normal mucosa of cancer-free individuals matched for age using dual-color fluorescence in situ hybridization. Twenty-one patients ranging in age from 28 to 68 years were divided into five-year groups for comparison with 16 cancer-free individuals matched for age. The medical records of all patients were examined to obtain clinical and histopathological data. None of the patients had undergone radiotherapy or chemotherapy before surgery. In all groups, the frequency of Y-chromosome loss was higher among patients than among normal reference subjects (P < 0.0001) and was not age-dependent. These data suggest that Y-chromosome loss is a tumor-specific alteration not associated with advanced age in head and neck carcinomas.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A phosphorylation balance governed by Ipl1 Aurora kinase and the Glc7 phosphatase is essential for normal chromosome segregation in S. cerevisiae . Deletion of SET1, a histone K4 methyltransferase, suppresses the temperature sensitive phenotype of ipl1-2, and loss the catalytic activity of Set1 is important for this suppression. SET1 deletion also suppresses chromosome loss in ipl1-2 cells. Deletion of other Set1 complex components suppresses the temperature sensitivity of ipl1-2 as well. In contrast, SET1 deletion is synthetic lethal combined with glc7-127. Strikingly, these effects are independent of previously defined functions for Set1 in transcription initiation and histone H3 methylation. I find that Set1 methylates conserved lysines in a kinetochore protein, Dam1, a key mitotic substrate of Ipl1/Glc7. Biochemical and genetic experiments indicate that Dam1 methylation inhibits Ipl1-mediated phosphorylation of flanking serines. My studies demonstrate that Set1 has important, unexpected functions in mitosis through modulating the phosphorylation balance regulated by Ipl1/Glc7. Moreover, my findings suggest that antagonism between lysine methylation and serine phosphorylation is a fundamental mechanism for controlling protein function. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Yeast two-hybrid and genetic interaction screens indicate that Bir1p, a yeast protein containing phylogenetically conserved antiapoptotic repeat domains called baculovirus inhibitor of apoptosis repeats (BIRs), is involved in chromosome segregation events. In the two-hybrid screen, Bir1p specifically interacts with Ndc10p, an essential component of the yeast kinetochore. Although Bir1p carries two BIR motifs in the N-terminal region, the C-terminal third of the protein is sufficient to provide strong interaction with Ndc10p and moderate interaction with Skp1p, another essential component of the yeast kinetochore. In addition, deletion of BIR1 is synthetically lethal with deletion of CBF1 or CTF19, genes specifying two other components of the yeast kinetochore. Yeast cells deleted of BIR1 have a chromosome-loss phenotype, which can be completely rescued by elevating NDC10 dosage. Furthermore, overexpression of either full-length or the C-terminal region of Bir1p can efficiently suppress the chromosome-loss phenotype of both bir1Δ null and skp1-4 mutants. Our data suggest that Bir1p participates in chromosome segregation events, either directly or via interaction with kinetochore proteins, and these effects are apparently not mediated by the BIR domains of Bir1p.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Genetic events leading to the loss of heterozygosity (LOH) have been shown to play a crucial role in the development of cancer. However, LOH events do not occur only in genetically unstable cancer cells but also have been detected in normal somatic cells of mouse and man. Mice, in which one of the alleles for adenine phosphoribosyltransferase (Aprt) has been disrupted by gene targeting, were used to investigate the potency of carcinogens to induce LOH in vivo. After 7,12-dimethyl-1,2-benz[a]anthracene (DMBA) exposure, a 3-fold stronger mutagenic response was detected at the autosomal Aprt gene than at the X chromosomal hypoxantine-guanine phosphoribosyltransferase (Hprt) gene in splenic T-lymphocytes. Allele-specific PCR analysis showed that the normal, nontargeted Aprt allele was lost in 70% of the DMBA-induced Aprt mutants. Fluorescence in situ hybridization analysis demonstrated that the targeted allele had become duplicated in almost all DMBA-induced mutants that displayed LOH at Aprt. These results indicate that the main mechanisms by which DMBA caused LOH were mitotic recombination or chromosome loss and duplication but not deletion. However, after treatment with the alkylating agent N-ethyl-N-nitrosourea, Aprt had a similar mutagenic response to Hprt while the majority (90%) of N-ethyl-N-nitrosourea-induced Aprt mutants had retained both alleles. Unexpectedly, irradiation with x-rays, which induce primarily large deletions, resulted in a significant increase of the mutant frequency at Hprt but not at Aprt. This in vivo study clearly indicates that, in normal somatic cells, carcinogen exposure can result in the induction of LOH events that are compatible with cell survival and may represent an initiating event in tumorigenesis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Escherichia coli muk mutants are temperature-sensitive and produce anucleate cells. A spontaneously occurring mutation was found in a ΔmukB∷kan mutant strain that suppressed the temperature-sensitive phenotype and mapped in or near topA, the gene that encodes topoisomerase I. Previously characterized topA mutations, topA10 and topA66, were found to be general suppressors of muk mutants: they suppressed temperature sensitivity and anucleate cell production of cells containing null or point mutations in mukB and null mutations in mukE or mukF. The suppression correlated with excess negative supercoiling by DNA gyrase, and the gyrase inhibitor, coumermycin, reversed it. Defects in topA allow 99% of cell division events in muk null mutants to proceed without chromosome loss or loss of cell viability. This observation imposes important limitations on models for Muk activity and is consistent with a role for MukBEF in chromosome folding and DNA condensation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study investigated the hypothesis that the chromosomal genotoxicity of inorganic mercury results from interaction(s) with cytoskeletal proteins. Effects of Hg2+ salts on functional activities of tubulin and kinesin were investigated by determining tubulin assembly and kinesin-driven motility in cell-free systems. Hg2+ inhibits microtubule assembly at concentrations above 1 μM, and inhibition is complete at about 10 μM. In this range, the tubulin assembly is fully (up to 6 μM) or partially (∼6-10 μM) reversible. The inhibition of tubulin assembly by mercury is independent of the anion, chloride or nitrate. The no-observed-effect- concentration for inhibition of microtubule assembly in vitro was 1 μM Hg2+, the IC50 5.8 μM. Mercury(II) salts at the IC 50 concentrations partly inhibiting tubulin assembly did not cause the formation of aberrant microtubule structures. Effects of mercury salts on the functionality of the microtubule motility apparatus were studied with the motor protein kinesin. By using a "gliding assay" mimicking intracellular movement and transport processes in vitro, HgCl2 affected the gliding velocity of paclitaxel-stabilised microtubules in a clear dose-dependent manner. An apparent effect is detected at a concentration of 0.1 μM and a complete inhibition is reached at 1 μM. Cytotoxicity of mercury chloride was studied in V79 cells using neutral red uptake, showing an influence above 17 μM HgCl2. Between 15 and 20 μM HgCl2 there was a steep increase in cell toxicity. Both mercury chloride and mercury nitrate induced micronuclei concentration-dependently, starting at concentrations above 0.01 μM. CREST analyses on micronuclei formation in V79 cells demonstrated both clastogenic (CREST-negative) and aneugenic effects of Hg2+, with some preponderance of aneugenicity. A morphological effect of high Hg2+ concentrations (100 μM HgCl2) on the microtubule cytoskeleton was verified in V79 cells by immuno-fluorescence staining. The overall data are consistent with the concept that the chromosomal genotoxicity could be due to interaction of Hg2+ with the motor protein kinesin mediating cellular transport processes. Interactions of Hg 2+ with the tubulin shown by in vitro investigations could also partly influence intracellular microtubule functions leading, together with the effects on the kinesin, to an impaired chromosome distribution as shown by the micronucleus test.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Candida albicans and Candida dubliniensis are diploid, predominantly asexual human-pathogenic yeasts. In this study, we constructed tetraploid (4n) strains of C. albicans of the same or different lineages by spheroplast fusion. Induction of chromosome loss in the tetraploid C. albicans generated diploid or near-diploid progeny strains but did not produce any haploid progeny. We also constructed stable heterotetraploid somatic hybrid strains (2n + 2n) of C. albicans and C. dubliniensis by spheroplast fusion. Heterodiploid (n + n) progeny hybrids were obtained after inducing chromosome loss in a stable heterotetraploid hybrid. To identify a subset of hybrid heterodiploid progeny strains carrying at least one copy of all chromosomes of both species, unique centromere sequences of various chromosomes of each species were used as markers in PCR analysis. The reduction of chromosome content was confirmed by a comparative genome hybridization (CGH) assay. The hybrid strains were found to be stably propagated. Chromatin immunoprecipitation (ChIP) assays with antibodies against centromere-specific histones (C. albicans Cse4/C. dubliniensis Cse4) revealed that the centromere identity of chromosomes of each species is maintained in the hybrid genomes of the heterotetraploid and heterodiploid strains. Thus, our results suggest that the diploid genome content is not obligatory for the survival of either C. albicans or C. dubliniensis. In keeping with the recent discovery of the existence of haploid C. albicans strains, the heterodiploid strains of our study can be excellent tools for further species-specific genome elimination, yielding true haploid progeny of C. albicans or C. dubliniensis in future.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We describe the cytogenetic study of two basal cell carcinomas. Only single chromosomally abnormal clones could be detected in both. In addition, many nonclonal changes were seen in the samples, which may represent small neoplastic clones or the result of a basic molecular defect induced by carcinogens.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Undifferentiated high-grade pleomorphic sarcomas (UPSs) display aggressive clinical behavior and frequently develop local recurrence and distant metastasis. Because these sarcomas often share similar morphological patterns with other tumors, particularly leiomyosarcomas (LMSs), classification by exclusion is frequently used. In this study, array-based comparative genomic hybridization (array CGH) was used to analyze 20 UPS and 17 LMS samples from untreated patients. The LMS samples presented a lower frequency of genomic alterations compared with the UPS samples. The most frequently altered UPS regions involved gains at 20q13.33 and 7q22.1 and losses at 3p26.3. Gains at 8q24.3 and 19q13.12 and losses at 9p21.3 were frequently detected in the LMS samples. Of these regions, gains at 1q21.3, 11q12.2-q12.3, 16p11.2, and 19q13.12 were significantly associated with reduced overall survival times in LMS patients. A multivariate analysis revealed that gains at 1q21.3 were an independent prognostic marker of shorter survival times in LMS patients (HR = 13.76; P = 0.019). Although the copy number profiles of the UPS and LMS samples could not be distinguished using unsupervised hierarchical clustering analysis, one of the three clusters presented cases associated with poor prognostic outcome (P = 0.022). A relative copy number analysis for the ARNT, SLC27A3, and PBXIP1 genes was performed using quantitative real-time PCR in 11 LMS and 16 UPS samples. Gains at 1q21-q22 were observed in both tumor types, particularly in the UPS samples. These findings provide strong evidence for the existence of a genomic signature to predict poor outcome in a subset of UPS and LMS patients. © 2013 Silveira et al.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

RecA in Escherichia coli and it's homologue, ScRad51 in Saccharomyces cerevisiae, play important roles in recombinational repair. ScRad51 homologues have been discovered in a wide range of organisms including Schizosaccharomyces pombe, lily, chicken, mouse and human. To date there is no direct evidence to describe that mouse Rad51(MmRad51) is involved in DNA double-strand break repair. In order to elucidate the role of MmRad51 in vivo, it was mutated by the embryonic stem (ES) cell/gene targeting technology in mice. The mutant embryos arrested in development shortly after implantation. There was a decrease in cell proliferation followed by programmed cell death, and trophectoderm-derived cells were sensitive to $\gamma$-radiation. Severe chromosome loss was observed in most mitotically dividing cells. The mutant embryos lived longer and developed further in a p53 mutant background; however, double-mutant embryonic fibroblasts failed to proliferate in tissue culture, reflecting the embryos limited life span. Based on these data, MmRad51 repairs DNA damage induced by $\gamma$-radiation, is needed to maintain euplody, and plays an important role in proliferating cells.^ Ku is a heterodimer of 70 and 80 kDs subunit, which binds to DNA ends and other altered DNA structures such as hairpins, nicks, and gaps. In addition, Ku is required for DNA-PK activity through a direct association. Although the biochemical properties of Ku and DNA-PKcs have been characterized in cells, their physiological functions are not clear. In order to understand the function of Ku in vivo, we generated mice homozygous for a mutation of the Ku80 gene. Ku80-deficient mice, like scid mice, showed severe immunodeficiency due to a impairment of V(D)J recombination. Mutant mice were semiviable and runted, cells derived from mutant embryos displayed hypersensitivity to $\gamma$-radiation, a decreased growth rate, a slow entry into S phase, altered colony size distributions, and a short life span. Based on these results, mutant cells and mice appeared to prematurely age. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wilms' tumor (WT) is a childhood embryonic tumor of the kidney. In some cases, WT has been associated with a chromosome deletion in the region 11p13. The majority of WT cases, however, have normal karyotypes with no discernable deletions or rearrangements of chromosome 11.^ To study the genetic events predisposing to the development of WT, I have used a number of gene markers specific for chromosome 11. Gene probes for human catalase and apolipoprotein A1 were localized to chromosome 11 by in situ hybridization. A number of other probes previously mapped to chromosome 11 were also used. Nine WT patients who were heterozygous for at least one 11p marker were shown to lose heterozygosity in their tumor DNA. Gene dosage experiments demonstrated that two chromosomes 11 were present although loss of heterozygosity had occurred in all but two cases. By using gene probes from the short and long arms of chromosome 11, I discerned that loss of heterozygosity was due to somatic recombination in four cases, chromosome deletion in two cases, and chromosome loss and reduplication or somatic recombination in these cases. Examination of DNAs from the parents of six of these patients indicated that the alleles that were lost in tumor tissues were alleles inherited from the mother. In sporadic WT cases one would expect the loss of alleles to be random. These data suggest that the loss of alleles resulting in the development of WT is not a random event, however, the significance of this is not known. ^