965 resultados para Choppers (Circuits)
Resumo:
The dc capacitors voltage unbalancing is the main technical drawback of a diode-clamped multilevel inverter (DCMLI), with more than three levels. A voltage-balancing circuit based on buck–boost chopper connected to the dc link of DCMLI is a reliable and robust solution to this problem. This study presents four different schemes for controlling the chopper circuit to achieve the capacitor voltages equalisation. These can be broadly categorised as single-pulse, multi-pulse and hysteresis band current control schemes. The single-pulse scheme does not involve faster switching actions but need the chopper devices to be rated for higher current. The chopper devices current rating can be kept limited by using the multi-pulse scheme but it involves faster switching actions and slower response. The hysteresis band current control scheme offers faster dynamics, lower current rating of the chopper devices and can nullify the initial voltage imbalance as well. However, it involves much faster switching actions which may not be feasible for some of its applications. Therefore depending on the system requirements and ratings, one of these schemes may be used. The performance and validity of the proposed schemes are confirmed through both simulation and experimental investigations on a prototype five-level diode-clamped inverter.
Resumo:
This paper proposes a flying-capacitor-based chopper circuit for dc capacitor voltage equalization in diode-clamped multilevel inverters. Its important features are reduced voltage stress across the chopper switches, possible reduction in the chopper switching frequency, improved reliability, and ride-through capability enhancement. This topology is analyzed using three- and four-level flying-capacitor-based chopper circuit configurations. These configurations are different in capacitor and semiconductor device count and correspondingly reduce the device voltage stresses by half and one-third, respectively. The detailed working principles and control schemes for these circuits are presented. It is shown that, by preferentially selecting the available chopper switch states, the dc-link capacitor voltages can be efficiently equalized in addition to having tightly regulated flying-capacitor voltages around their references. The various operating modes of the chopper are described along with their preferential selection logic to achieve the desired performances. The performance of the proposed chopper and corresponding control schemes are confirmed through both simulation and experimental investigations.
Resumo:
This paper presents a database ATP (Alternative Transient Program) simulated waveforms for shunt reactor switching cases with vacuum breakers in motor circuits following interruption of the starting current. The targeted objective is to provide multiple reignition simulated data for diagnostic and prognostic algorithms development, but also to help ATP users with practical study cases and component data compilation for shunt reactor switching. This method can be easily applied with different data for the different dielectric curves of circuit-breakers and networks. This paper presents design details, discusses some of the available cases and the advantages of such simulated data.
Resumo:
The existence of any film genre depends on the effective operation of distribution networks. Contingencies of distribution play an important role in determining the content of individual texts and the characteristics of film genres; they enable new genres to emerge at the same time as they impose limits on generic change. This article sets out an alternative way of doing genre studies, based on an analysis of distributive circuits rather than film texts or generic categories. Our objective is to provide a conceptual framework that can account for the multiple ways in which distribution networks leave their traces on film texts and audience expectations, with specific reference to international horror networks, and to offer some preliminary suggestions as to how distribution analysis can be integrated into existing genre studies methodologies.
Resumo:
This paper presents a novel topology for the generation of high voltage pulses that uses both slow and fast solid-state power switches. This topology includes diode-capacitor units in parallel with commutation circuits connected to a positive buck-boost converter. This enables the generation of a range of high output voltages with a given number of capacitors. The advantages of this topology are the use of slow switches and a reduced number of diodes in comparison with conventional Marx generator. Simulations performed for single and repetitive pulse generation and experimental tests of a prototype hardware verify the proposed topology.
Resumo:
Pavlovian fear conditioning, also known as classical fear conditioning is an important model in the study of the neurobiology of normal and pathological fear. Progress in the neurobiology of Pavlovian fear also enhances our understanding of disorders such as posttraumatic stress disorder (PTSD) and with developing effective treatment strategies. Here we describe how Pavlovian fear conditioning is a key tool for understanding both the neurobiology of fear and the mechanisms underlying variations in fear memory strength observed across different phenotypes. First we discuss how Pavlovian fear models aspects of PTSD. Second, we describe the neural circuits of Pavlovian fear and the molecular mechanisms within these circuits that regulate fear memory. Finally, we show how fear memory strength is heritable; and describe genes which are specifically linked to both changes in Pavlovian fear behavior and to its underlying neural circuitry. These emerging data begin to define the essential genes, cells and circuits that contribute to normal and pathological fear.
Resumo:
The study of memory in most behavioral paradigms, including emotional memory paradigms, has focused on the feed forward components that underlie Hebb’s first postulate, associative synaptic plasticity. Hebb’s second postulate argues that activated ensembles of neurons reverberate in order to provide temporal coordination of different neural signals, and thereby facilitate coincidence detection. Recent evidence from our groups has suggested that the lateral amygdala (LA) contains recurrent microcircuits and that these may reverberate. Additionally this reverberant activity is precisely timed with latencies that would facilitate coincidence detection between cortical and sub cortical afferents to the LA.Thus, recent data at the microcircuit level in the amygdala provide some physiological evidence in support of the second Hebbian postulate.
Resumo:
Biological factors underlying individual variability in fearfulness and anxiety have important implications for stress-related psychiatric illness including PTSD and major depression. Using an advanced intercross line (AIL) derived from C57BL/6 and DBA/2J mouse strains and behavioral selection over 3 generations, we established two lines exhibiting High or Low fear behavior after fear conditioning. Across the selection generations, the two lines showed clear differences in training and tests for contextual and conditioned fear. Before fear conditioning training, there were no differences between lines in baseline freezing to a novel context. However, after fear conditioning High line mice demonstrated pronounced freezing in a new context suggestive of poor context discrimination. Fear generalization was not restricted to contextual fear. High fear mice froze to a novel acoustic stimulus while freezing in the Low line did not increase over baseline. Enhanced fear learning and generalization are consistent with transgenic and pharmacological disruption of the hypothalamic-pituitary-adrenal axis (HPA-axis) (Brinks, 2009, Thompson, 2004, Kaouane, 2012). To determine whether there were differences in HPA-axis regulation between the lines, morning urine samples were collected to measure basal corticosterone. Levels of secreted corticosterone in the circadian trough were analyzed by corticosterone ELISA. High fear mice were found to have higher basal corticosterone levels than low line animals. Examination of hormonal stress response components by qPCR revealed increased expression of CRH mRNA and decreased mRNA for MR and CRHR1 in hypothalamus of high fear mice. These alterations may contribute to both the behavioral phenotype and higher basal corticosterone in High fear mice. To determine basal brain activity in vivo in High and Low fear mice we used manganese-enhanced magnetic resonance imaging (MEMRI). Analysis revealed a pattern of basal brain activity made up of amygdala, cortical and hippocampal circuits that was elevated in the High line. Ongoing studies also seek to determine the relative balance of excitatory and inhibitory tone in the amygdala and hippocampus and the neuronal structure of its neurons. While these heterogeneous lines are selected on fear memory expression, HPA-axis alterations and differences in hippocampal activity segregate with the behavioral phenotypes. These differences are detectable in a basal state strongly suggesting these are biological traits underlying the behavioral phenotype (Johnson et al, 2011).
Resumo:
We consider the problem of deciding whether the output of a boolean circuit is determined by a partial assignment to its inputs. This problem is easily shown to be hard, i.e., co-Image Image -complete. However, many of the consequences of a partial input assignment may be determined in linear time, by iterating the following step: if we know the values of some inputs to a gate, we can deduce the values of some outputs of that gate. This process of iteratively deducing some of the consequences of a partial assignment is called propagation. This paper explores the parallel complexity of propagation, i.e., the complexity of determining whether the output of a given boolean circuit is determined by propagating a given partial input assignment. We give a complete classification of the problem into those cases that are Image -complete and those that are unlikely to be Image complete.
Resumo:
We discuss micro ring resonator based optical logic gates using Kerr-type nonlinearity. Resonant wavelength selectivity is one key factor in achieving the desired gate. Based on basic gates like AND gate, OR gate etc. We proceed to propose a 3-bit binary adder circuit.Due to the presence of more than a single wavelength, the system gets complicated as we increase the number of components in the circuit. Hence it has been observed that for efficient designing and functioning of digital circuits in optical domain, we need a device which can give single wavelength output, filtering out all other wavelengths and at the same time preserve the digital characteristics of the output. We propose such filter-preserver device based on micro ring resonator.
Resumo:
The current-biased single electron transistor (SET) (CBS) is an integral part of almost all hybrid CMOS SET circuits. In this paper, for the first time, the effects of energy quantization on the performance of CBS-based circuits are studied through analytical modeling and Monte Carlo simulations. It is demonstrated that energy quantization has no impact on the gain of the CBS characteristics, although it changes the output voltage levels and oscillation periodicity. The effects of energy quantization are further studied for two circuits: negative differential resistance (NDR) and neuron cell, which use the CBS. A new model for the conductance of NDR characteristics is also formulated that includes the energy quantization term.