131 resultados para Chondrites (Meteorites)
Resumo:
v.16:no.15(1969)
Resumo:
The common appearance of hygroscopic brine (“sweating”) on ordinary chondrites (OCs) from Oman during storage under room conditions initiated a study on the role of water-soluble salts on the weathering of OCs. Analyses of leachates from OCs and soils, combined with petrography of alteration features and a 11-month record of in situ meteorite and soil temperatures, are used to evaluate the role of salts in OC weathering. Main soluble ions in soils are Ca2+, SO42−, HCO3−, Na+, and Cl−, while OC leachates are dominated by Mg2+ (from meteoritic olivine), Ca2+ (from soil), Cl− (from soil), SO42− (from meteoritic troilite and soil), and iron (meteoritic). “Sweating meteorites” mainly contain Mg2+ and Cl−. The median Na/Cl mass ratio of leachates changes from 0.65 in soils to 0.07 in meteorites, indicating the precipitation of a Na-rich phase or loss of an efflorescent Na-salt. The total concentrations of water-soluble ions in bulk OCs ranges from 600 to 9000 μg g−1 (median 2500 μg g−1) as compared to 187–14140 μg g−1 in soils (median 1148 μg g−1). Soil salts dissolved by rain water are soaked up by meteorites by capillary forces. Daily heating (up to 66.3 °C) and cooling of the meteorites cause a pumping effect, resulting in a strong concentration of soluble ions in meteorites over time. The concentrations of water-soluble ions in meteorites, which are complex mixtures of ions from the soil and from oxidation and hydrolysis of meteoritic material, depend on the degree of weathering and are highest at W3. Input of soil contaminants generally dominates over the ions mobilized from meteorites. Silicate hydrolysis preferentially affects olivine and is enhanced by sulfide oxidation, producing local acidic conditions as evidenced by jarosite. Plagioclase weathering is negligible. After completion of troilite oxidation, the rate of chemical weathering slows down with continuing Ca-sulfate contamination.
Resumo:
We measured the concentrations and isotopic compositions of He, Ne, and Ar in 14 fragments from 12 different meteorites: three carbonaceous chondrites, six L chondrites (three most likely paired), one H chondrite, one R chondrite, and one ungrouped chondrite. The data obtained for the CV3 chondrites Ramlat as Sahmah (RaS) 221 and RaS 251 support the hypothesis of exposure age peaks for CV chondrites at approximately 9 Ma and 27 Ma. The exposure age for Shişr 033 (CR chondrite) of 7.3 Ma is also indicative of a possible CR chondrite exposure age peak. The three L chondrites Jiddat al Harasis (JaH) 091, JaH 230, and JaH 296, which are most likely paired, fall together with Hallingeberg into the L chondrite exposure age peak of approximately 15 Ma. The two L chondrites Shelburne and Lake Torrens fall into the peaks at approximately 40 Ma and 5 Ma, respectively. The ages for Bassikounou (H chondrite) and RaS 201 (R chondrite) are approximately 3.5 Ma and 5.8 Ma, respectively. Six of the studied meteorites show clear evidence for 3He diffusive losses, the deficits range from approximately 17% for one Lake Torrens aliquot to approximately 45% for RaS 211. The three carbonaceous chondrites RaS 221, RaS 251, and Shişr 033 all have excess 4He, either of planetary or solar origin. However, very high 4He/20Ne ratios occur at relatively low 20Ne/22Ne ratios, which is unexpected and needs further study. The measured 40Ar ages fit well into established systematics. They are between 2.5 and 4.5 Ga for the carbonaceous chondrites, older than 3.6 Ga for the L and H chondrites, and about 2.4 Ga for the R chondrite as well as for the ungrouped chondrite. Interestingly, none of our studied L chondrites has been degassed in the 470 Ma break-up event. Using the amount of trapped 36Ar as a proxy for noble gas contamination due to terrestrial weathering we are able to demonstrate that the samples studied here are not or only very slightly affected by terrestrial weathering (at least in terms of their noble gas budget).
Resumo:
We measured the concentrations and isotopic compositions of He, Ne, and Ar in bulk samples and metal separates of 14 ordinary chondrite falls with long exposure ages and high metamorphic grades. In addition, we measured concentrations of the cosmogenic radionuclides 10Be, 26Al, and 36Cl in metal separates and in the nonmagnetic fractions of the selected meteorites. Using cosmogenic 36Cl and 36Ar measured in the metal separates, we determined 36Cl-36Ar cosmic-ray exposure (CRE) ages, which are shielding-independent and therefore particularly reliable. Using the cosmogenic noble gases and radionuclides, we are able to decipher the CRE history for the studied objects. Based on the correlation 3He/21Ne versus 22Ne/21Ne, we demonstrate that, among the meteorites studied, only one suffered significant diffusive losses (about 35%). The data confirm that the linear correlation 3He/21Ne versus 22Ne/21Ne breaks down at high shielding. Using 36Cl-36Ar exposure ages and measured noble gas concentrations, we determine 21Ne and 38Ar production rates as a function of 22Ne/21Ne. The new data agree with recent model calculations for the relationship between 21Ne and 38Ar production rates and the 22Ne/21Ne ratio, which does not always provide unique shielding information. Based on the model calculations, we determine a new correlation line for 21Ne and 38Ar production rates as a function of the shielding indicator 22Ne/21Ne for H, L, and LL chondrites with preatmospheric radii less than about 65 cm. We also calculated the 10Be/21Ne and 26Al/21Ne production rate ratios for the investigated samples, which show good agreement with recent model calculations.
Resumo:
Amino acid analyses using HPLC of pristine interior pieces of the CI carbonaceous chondrites Orgueil and Ivuna have found that β-alanine, glycine, and γ-amino-n-butyric acid (ABA) are the most abundant amino acids in these two meteorites, with concentrations ranging from ≈600 to 2,000 parts per billion (ppb). Other α-amino acids such as alanine, α-ABA, α-aminoisobutyric acid (AIB), and isovaline are present only in trace amounts (<200 ppb). Carbon isotopic measurements of β-alanine and glycine and the presence of racemic (D/L ≈ 1) alanine and β-ABA in Orgueil suggest that these amino acids are extraterrestrial in origin. In comparison to the CM carbonaceous chondrites Murchison and Murray, the amino acid composition of the CIs is strikingly distinct, suggesting that these meteorites came from a different type of parent body, possibly an extinct comet, than did the CM carbonaceous chondrites.
Resumo:
The 'Late Heavy Bombardment' was a phase in the impact history of the Moon that occurred 3.8-4.0 Gyr ago, when the lunar basins with known dates were formed(1,2). But no record of this event has yet been reported from the few surviving rocks of this age on the Earth. Here we report tungsten isotope anomalies, based on the Hf-182-W-182 system (half-life of 9 Myr), in metamorphosed sedimentary rocks from the 3.7-3.8-Gyr-old Isua greenstone belt of West Greenland and closely related rocks from northern Labrador, Canada. As it is difficult to conceive of a mechanism by which tungsten isotope heterogeneities could have been preserved in the Earth's dynamic crust-mantle environment from a time when short-lived Hf-182 was still present, we conclude that the metamorphosed sediments contain a component derived from meteorites.
Resumo:
The short-lived Hf-182-W-182-isotope system is an ideal clock to trace core formation and accretion processes of planets. Planetary accretion and metal/silicate fractionation chronologies are calculated relative to the chondritic Hf-182-W-182-isotope evolution. Here, we report new high-precision W-isotope data for the carbonaceous chondrite Allende that are much less radiogenic than previously reported and are in good agreement with published internal Hf-W chronometry of enstatite chondrites. If the W-isotope composition of terrestrial rocks, representing the bulk silicate Earth, is homogeneous and 2.24 epsilon(182W) units more radiogenic than that of the bulk Earth, metal/silicate differentiation of the Earth occurred very early. The new W-isotope data constrain the mean time of terrestrial core formation to 34 million years after the start of solar system accretion. Early terrestrial core formation implies rapid terrestrial accretion, thus permitting formation of the Moon by giant impact while Hf-182 was still alive. This could explain why lunar W-isotopes are more radiogenic than the terrestrial value. Copyright (C) 2002 Elsevier Science Ltd.
Resumo:
v.5:no.1(1914)
Resumo:
v.3:no.2(1906)
Resumo:
v.3:no.10(1916)
Resumo:
Our mineralogical and chemical studies of silicate-bearing inclusions, in the two IAB iron meteorites Caddo County and Zagora, suggest their classification as Odessa type. Mineral and chemical composition of the inclusions in both meteorites is very similar. Silicates show little chemical heterogeneity. The inclusions differ, however, in shape, accessory mineralogy and texture.
Resumo:
The generic concept of the artificial meteorite experiment STONE is to fix rock samples bearing microorganisms on the heat shield of a recoverable space capsule and to study their modifications during atmospheric re-entry. The STONE-5 experiment was performed mainly to answer astrobiological questions. The rock samples mounted on the heat shield were used (i) as a carrier for microorganisms and (ii) as internal control to verify whether physical conditions during atmospheric re-entry were comparable to those experienced by "real" meteorites. Samples of dolerite (an igneous rock), sandstone (a sedimentary rock), and gneiss impactite from Haughton Crater carrying endolithic cyanobacteria were fixed to the heat shield of the unmanned recoverable capsule FOTON-M2. Holes drilled on the back side of each rock sample were loaded with bacterial and fungal spores and with dried vegetative cryptoendoliths. The front of the gneissic sample was also soaked with cryptoendoliths. <p>The mineralogical differences between pre- and post-flight samples are detailed. Despite intense ablation resulting in deeply eroded samples, all rocks in part survived atmospheric re-entry. Temperatures attained during re-entry were high enough to melt dolerite, silica, and the gneiss impactite sample. The formation of fusion crusts in STONE-5 was a real novelty and strengthens the link with real meteorites. The exposed part of the dolerite is covered by a fusion crust consisting of silicate glass formed from the rock sample with an admixture of holder material (silica). Compositionally, the fusion crust varies from silica-rich areas (undissolved silica fibres of the holder material) to areas whose composition is "basaltic". Likewise, the fusion crust on the exposed gneiss surface was formed from gneiss with an admixture of holder material. The corresponding composition of the fusion crust varies from silica-rich areas to areas with "gneiss" composition (main component potassium-rich feldspar). The sandstone sample was retrieved intact and did not develop a fusion crust. Thermal decomposition of the calcite matrix followed by disintegration and liberation of the silicate grains prevented the formation of a melt.</p> <p>Furthermore, the non-exposed surface of all samples experienced strong thermal alterations. Hot gases released during ablation pervaded the empty space between sample and sample holder leading to intense local heating. The intense heating below the protective sample holder led to surface melting of the dolerite rock and to the formation of calcium-silicate rims on quartz grains in the sandstone sample. (c) 2008 Elsevier Ltd. All rights reserved.</p>
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Zusammenfassung - Die vorliegende Dissertation beschreibt die massenspektrometrische Bestimmung der Edelgaskonzentrationen und -isotopenverhältnisse von insgesamt 47 Enstatit-Chondriten (E-Chondriten). E-Chondrite bilden eine Meteoritengruppe, die sich durch einen hohen Reduktionsgrad auszeichnet. Es gibt Hinweise darauf, dass sie im inneren Bereich des Sonnensystems entstanden. Ihre chemischen und mineralogischen Eigenschaften können daher auch Aufschluss über die Genese der terrestrischen Planeten geben. Die Edelgasmessungen hatten im wesentlichen die Berechnung von Bestrahlungsaltern sowie die Untersuchung der getrappten Edelgaskomponenten zum Ziel. Die Bestrahlungsalter der E-Chondrite liegen zwischen 0.5 und 50 Millionen Jahren. Eine zweifelsfreie Aussage über Häufungen in der Altersverteilung, die auf große Impaktereignisse auf dem Mutterkörper hinweisen könnten, lässt sich aufgrund der relativ hohen Unsicherheit der Alter (20 Prozent) nicht treffen.Etwa 10 Prozent der E-Chondrite enthalten signifikante solare Gasanteile. Alle zählen zum nicht-equilibrierten petrologischen Typ 3.In der elementaren Zusammensetzung der getrappten schweren Edelgase fällt auf, dass EH3-Chondrite (H für high iron) vorrangig ein stärker fraktioniertes (planetares), relativ Ar-armes Edelgasmuster aufweisen, während alle übrigen Typen E4-6 von einer sog. subsolaren, relativ Ar-reichen Signatur dominiert werden. Diese Verteilung und Zusammensetzung lassen sich nicht ohne weiteres mit dem Modell zur Entstehung der petrologischen Typen durch Metamorphose, wie es für die gewöhnlichen Chondrite formuliert wurde, erklären.
Resumo:
Neben astronomischen Beobachtungen mittels boden- und satellitengestützer Instrumente existiert ein weiterer experimenteller Zugang zu astrophysikalischen Fragestellungen in Form einer Auswahl extraterrestrischen Materials, das für Laboruntersuchungen zur Verfügung steht. Hierzu zählen interplanetare Staubpartikel, Proben, die von Raumfahrzeugen zur Erde zurückgebracht wurden und primitive Meteorite. Von besonderem Interesse sind sog. primitive kohlige Chondrite, eine Klasse von Meteoriten, die seit ihrer Entstehung im frühen Sonnensystem kaum verändert wurden. Sie enthalten neben frühem solarem Material präsolare Minerale, die in Sternwinden von Supernovae und roten Riesensternen kondensiert sind und die Bildung unseres Sonnensystems weitgehend unverändert überstanden haben. Strukturelle, chemische und isotopische Analysen dieser Proben besitzen demnach eine große Relevanz für eine Vielzahl astrophysikalischer Forschungsgebiete. Im Rahmen der vorliegenden Arbeit wurden Laboranalysen mittels modernster physikalischer Methoden an Bestandteilen primitiver Meteorite durchgeführt. Aufgrund der Vielfalt der zu untersuchenden Eigenschaften und der geringen Größen der analysierten Partikel zwischen wenigen Nanometern und einigen Mikrometern mussten hierbei hohe Anforderungen an Nachweiseffizienz und Ortsauflösung gestellt werden. Durch die Kombination verschiedener Methoden wurde ein neuer methodologischer Ansatz zur Analyse präsolarer Minerale (beispielsweise SiC) entwickelt. Aufgrund geringer Mengen verfügbaren Materials basiert dieses Konzept auf der parallelen nichtdestruktiven Vorcharakterisierung einer Vielzahl präsolarer Partikel im Hinblick auf ihren Gehalt diagnostischer Spurenelemente. Eine anschließende massenspektrometrische Untersuchung identifizierter Partikel mit hohen Konzentrationen interessanter Elemente ist in der Lage, Informationen zu nukleosynthetischen Bedingungen in ihren stellaren Quellen zu liefern. Weiterhin wurden Analysen meteoritischer Nanodiamanten durchgeführt, deren geringe Größen von wenigen Nanometern zu stark modifizierten Festkörpereigenschaften führen. Im Rahmen dieser Arbeit wurde eine quantitative Beschreibung von Quanteneinschluss-Effekten entwickelt, wie sie in diesen größenverteilten Halbleiter-Nanopartikeln auftreten. Die abgeleiteten Ergebnisse besitzen Relevanz für nanotechnologische Forschungen. Den Kern der vorliegenden Arbeit bilden Untersuchungen an frühen solaren Partikeln, sog. refraktären Metall Nuggets (RMN). Mit Hilfe struktureller, chemischer und isotopischer Analysen, sowie dem Vergleich der Ergebnisse mit thermodynamischen Rechnungen, konnte zum ersten Mal ein direkter Nachweis von Kondensationsprozessen im frühen solaren Nebel erbracht werden. Die analysierten RMN gehören zu den ersten Festkörperkondensaten, die im frühen Sonnensystem gebildet wurden und scheinen seit ihrer Entstehung nicht durch sekundäre Prozesse verändert worden zu sein. Weiterhin konnte erstmals die Abkühlrate des Gases des lokalen solaren Nebels, in dem die ersten Kondensationsprozesse stattfanden, zu 0.5 K/Jahr bestimmt werden, wodurch ein detaillierter Blick in die thermodynamische Geschichte des frühen Sonnensystems möglich wird. Die extrahierten Parameter haben weitreichende Auswirkungen auf die Modelle der Entstehung erster solarer Festkörper, welche die Grundbausteine der Planetenbildung darstellen.