430 resultados para Chloramphenicol acetyltransferase


Relevância:

100.00% 100.00%

Publicador:

Resumo:

As previously observed for FK506, we report here that cyclosporin A (CsA) treatment of mouse fibroblast cells stably transfected with the mouse mammary tumor virus-chloramphenicol acetyltransferase (MMTV-CAT) reporter plasmid (LMCAT cells) results in potentiation of dexamethasone (Dex)-induced CAT gene expression. Potentiation by CsA is observed in cells treated with 10-100 nM Dex but not in cells treated with 1 microM Dex, a concentration of hormone which results in maximum CAT activity. At 10 nM Dex, 1-5 microM CsA provokes an approximately 50-fold increase in CAT gene transcription, compared with transcription induced by Dex alone. No induction of CAT gene expression is observed in cells treated with CsA or FK506 in the absence of Dex. The antisteroid RU 486 abolishes effects obtained in the presence of Dex. Using a series of CsA, as well as FK506, analogs, including some devoid of calcineurin phosphatase inhibition activity, we conclude that the potentiation effects of these drugs on Dex-induced CAT gene expression in LMCAT cells do not occur through a calcineurin-mediated pathway. Western-blotting experiments following immunoprecipitation of glucocorticosteroid receptor (GR) complexes resulted in coprecipitation of GR, heat shock protein hsp90 and two immunophilins: the FK506-binding protein FKBP59 and the CsA-binding protein cyclophilin 40 (CYP40). Two separate immunophilin-hsp90 complexes are present in LMCAT cells: one containing CYP40-hsp90, the other FKBP59-hsp90. Thus, both FKBP59 and CYP40 can be classified as hsp-binding immunophilins, and their possible involvement as targets of immunosuppressants potentiating the GR-mediated transcriptional activity is discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Studies of abundance, diversity and distribution of antibiotic-resistant bacteria and their resistance determinants are necessary for effective prevention and control of antibiotic resistance and its dissemination, critically important for public health and environment management. In order to gain an understanding of the persistence of resistance in the absence of a specific antibiotic selective pressure, microbiological surveys were carried out to investigate chloramphenicol-resistant bacteria and the chloramphenicol acetyltransferase resistance genes in Jiaozhou Bay after chloramphenicol was banned since 1999 in China. About 0.15-6.70% cultivable bacteria were chloramphenicol resistant, and the highest abundances occurred mainly in the areas near river mouths or sewage processing plants. For the dominant resistant isolates, 14 genera and 25 species were identified, mostly being indigenous estuarine or marine bacteria. Antibiotic-resistant potential human or marine animal pathogens, such as Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis and Shewanella algae, were also identified. For the molecular resistance determinants, the cat I and cat III genes could be detected in some of the resistant strains, and they might have the same origins as those from clinical strains as determined via gene sequence analysis. Further investigation about the biological, environmental and anthropogenic mechanisms and their interactions that may contribute to the persistence of antibiotic-resistance in coastal marine waters in the absence of specific antibiotic selective pressure is necessary for tackling this complicated environmental issue.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The sea urchin embryonic skeleton, or spicule, is deposited by mesenchymal progeny of four precursor cells, the micromeres, which are determined to the skeletogenic pathway by a process known as cytoplasmic localization. A gene encoding one of the major products of the skeletogenic mesenchyme, a prominent 50 kD protein of the spicule matrix, has been characterized in detail. cDNA clones were first isolated by antibody screening of a phage expression library, followed by isolation of homologous genomic clones. The gene, known as SM50, is single copy in the sea urchin genome, is divided into two exons of 213 and 1682 bp, and is expressed only in skeletogenic cells. Transcripts are first detectable at the 120 cell stage, shortly after the segregation of the skeletogenic precursors from the rest of the embryo. The SM50 open reading frame begins within the first exon, is 450 amino acids in length, and contains a loosely repeated 13 amino acid motif rich in acidic residues which accounts for 45% of the protein and which is possibly involved in interaction with the mineral phase of the spicule.

The important cis-acting regions of the SM50 gene necessary for proper regulation of expression were identified by gene transfer experiments. A 562 bp promoter fragment, containing 438 bp of 5' promoter sequence and 124 bp of the SM50 first exon (including the SM50 initiation codon), was both necessary and sufficient to direct high levels of expression of the bacterial chloramphenicol acetyltransferase (CAT) reporter gene specifically in the skeletogenic cells. Removal of promoter sequences between positions -2200 and -438, and of transcribed regions downstream of +124 (including the SM50 intron), had no effect on the spatial or transcriptional activity of the transgenes.

Regulatory proteins that interact with the SM50 promoter were identified by the gel retardation assay, using bulk embryo mesenchyme blastula stage nuclear proteins. Five protein binding sites were identified and mapped to various degrees of resolution. Two sites are homologous, may be enhancer elements, and at least one is required for expression. Two additional sites are also present in the promoter of the aboral ectoderm specific cytoskeletal actin gene CyIIIa; one of these is a CCAA T element, the other a putative repressor element. The fifth site overlaps the binding site of the putative repressor and may function as a positive regulator by interfering with binding of the repressor. All of the proteins are detectable in nuclear extracts prepared from 64 cell stage embryos, a stage just before expression of SM50 is initiated, as well as from blastula and gastrula stage; the putative enhancer binding protein may be maternal as well.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Interleukin 2 (IL2) is the primary growth hormone used by mature T cells and this lymphokine plays an important role in the magnification of cell-mediated immune responses. Under normal circumstances its expression is limited to antigen-activated type 1 helper T cells (TH1) and the ability to transcribe this gene is often regarded as evidence for commitment to this developmental lineage. There is, however, abundant evidence than many non-TH1 T cells, under appropriate conditions, possess the ability to express this gene. Of paramount interest in the study of T-cell development is the mechanisms by which differentiating thymocytes are endowed with particular combinations of cell surface proteins and response repertoires. For example, why do most helper T cells express the CD4 differentiation antigen?

As a first step in understanding these developmental processes the gene encoding IL2 was isolated from a mouse genomic library by probing with a conspecific IL2 cDNA. The sequence of the 5' flanking region from + 1 to -2800 was determined and compared to the previously reported human sequence. Extensive identity exists between +1 and -580 (86%) and sites previously shown to be crucial for the proper expression of the human gene are well conserved in both sequence location in the mouse counterpart.

Transient expression assays were used to evaluate the contribution of various genomic sequences to high-level gene expression mediated by a cloned IL2 promoter fragment. Differing lengths of 5' flanking DNA, all terminating in the 5' untranslated region, were linked to a reporter gene, bacterial chloramphenicol acetyltransferase (CAT) and enzyme activity was measured after introduction into IL2-producing cell lines. No CAT was ever detected without stimulation of the recipient cells. A cloned promoter fragment containing only 321 bp of upstream DNA was expressed well in both Jurkat and EL4.El cells. Addition of intragenic or downstream DNA to these 5' IL2-CAT constructs showed that no obvious regulatory regions resided there. However, increasing the extent of 5' DNA from -321 to -2800 revealed several positive and negative regulatory elements. One negative region that was well characterized resided between -750 and -1000 and consisted almost exclusively of alternating purine and pyrimidines. There is no sequence resembling this in the human gene now, but there is evidence that there may have once been.

No region, when deleted, could relax either the stringent induction-dependence on cell-type specificity displayed by this promoter. Reagents that modulated endogenous IL2 expression, such as cAMP, cyclosporin A, and IL1, affected expression of the 5' IL2-CAT constructs also. For a given reagent, expression from all expressible constructs was suppressed or enhanced to the same extent. This suggests that these modulators affect IL2 expression through perturbation of a central inductive signal rather than by summation of the effects of discrete, independently regulated, negative and positive transcription factors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In addition to conveying cellular responses to an effector molecule, receptors are often themselves regulated by their effectors. We have demonstrated that epinephrine modulates both the rate of transcription of the beta 2-adrenergic receptor (beta 2AR) gene and the steady-state level of beta 2AR mRNA in DDT1MF-2 cells. Short-term (30 min) exposure to epinephrine (100 nM) stimulates the rate of beta 2AR gene transcription, resulting in a 3- to 4-fold increase in steady-state beta 2AR mRNA levels. These effects are mimicked by 1 mM N6,O2'-dibutyryladenosine 3',5'-cyclic monophosphate (Bt2cAMP) or foskolin but not by phorbol esters. The half-life of the beta 2AR mRNA after addition of actinomycin D (46.7 +/- 10.2 min; mean +/- SEM; n = 5) remained unchanged after 30 min of epinephrine treatment (46.8 +/- 10.6 min; mean +/- SEM; n = 4), indicating that a change in transcription rate is the predominant factor responsible for the increase of beta 2AR mRNA. Whereas brief exposure to epinephrine or Bt2cAMP does not significantly affect the total number of cellular beta 2ARs (assessed by ligand binding), continued exposure results in a gradual decline in beta 2AR number to approximately 20% (epinephrine) or approximately 45% (Bt2cAMP) of the levels in control cells by 24 hr. Similar decreases in agonist-stimulated adenylyl cyclase activity are observed. This loss of receptors with prolonged agonist exposure is accompanied by a 50% reduction in beta 2AR mRNA. Transfection of the beta 2AR promoter region cloned onto a reporter gene (bacterial chloramphenicol acetyltransferase) allowed demonstration of a 2- to 4-fold induction of transcription by agents that elevate cAMP levels, such as forskolin or phosphodiesterase inhibitors. These results establish the presence of elements within the proximal promoter region of the beta 2AR gene responsible for the transcriptional enhancing activity of cAMP and demonstrate that beta 2AR gene expression is regulated by a type of feedback mechanism involving the second messenger cAMP.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ABSTRACTDie vorliegende Arbeit befasste sich mit der Reinigung,heterologen Expression, Charakterisierung, molekularenAnalyse, Mutation und Kristallisation des EnzymsVinorin-Synthase. Das Enzym spielt eine wichtige Rolle inder Ajmalin-Biosynthese, da es in einerAcetyl-CoA-abhängigen Reaktion die Umwandlung desSarpagan-Alkaloids 16-epi-Vellosimin zu Vinorin unterBildung des Ajmalan-Grundgerüstes katalysiert. Nach der Reinigung der Vinorin-Synthase ausHybrid-Zellkulturen von Rauvolfia serpentina/Rhazya strictamit den fünf chromatographischen TrennmethodenAnionenaustauschchromatographie an SOURCE 30Q, HydrophobeInteraktionen Chromatographie an SOURCE 15PHE,Chromatographie an MacroPrep Ceramic Hydroxyapatit,Anionenaustauschchromatographie an Mono Q undGrößenausschlußchromatographie an Superdex 75 konnte dieVinorin-Synthase aus 2 kg Zellkulturgewebe 991fachangereichert werden.Das nach der Reinigung angefertigte SDS-Gel ermöglichte eineklare Zuordnung der Protein-Bande als Vinorin-Synthase.Der Verdau der Enzymbande mit der Endoproteinase LysC unddie darauffolgende Sequenzierung der Spaltpeptide führte zuvier Peptidsequenzen. Der Datenbankvergleich (SwissProt)zeigte keinerlei Homologien zu Sequenzen bekannterPflanzenenzyme. Mit degenerierten Primern, abgeleitet voneinem der erhaltenen Peptidfragmente und einer konserviertenRegion bekannter Acetyltransferasen gelang es, ein erstescDNA-Fragment der Vinorin-Synthase zu amplifizieren. Mit derMethode der RACE-PCR wurde die Nukleoidsequenzvervollständigt, was zu einem cDNA-Vollängenklon mit einerGröße von 1263 bp führte, der für ein Protein mit 421Aminosäuren (46 kDa) codiert.Das Vinorin-Synthase-Gen wurde in den pQE2-Expressionsvektorligiert, der für einen N-terminalen 6-fachen His-tagcodiert. Anschließend wurde sie erstmals erfolgreich in E.coli im mg-Maßstab exprimiert und bis zur Homogenitätgereinigt. Durch die erfolgreiche Überexpression konnte dieVinorin-Synthase eingehend charakterisiert werden. DerKM-Wert für das Substrat Gardneral wurde mit 20 µM, bzw.41.2 µM bestimmt und Vmax betrug 1 pkat, bzw. 1.71 pkat.Nach erfolgreicher Abspaltung des His-tags wurden diekinetischen Parameter erneut bestimmt (KM- Wert 7.5 µM, bzw.27.52 µM, Vmax 0.7 pkat, bzw. 1.21 pkat). Das Co-Substratzeigt einen KM- Wert von 60.5 µM (Vmax 0.6 pkat). DieVinorin-Synthase besitzt ein Temperatur-Optimum von 35 °Cund ein pH-Optimum bei 7.8.Homologievergleiche mit anderen Enzymen zeigten, dass dieVinorin-Synthase zu einer noch kleinen Familie von bisher 10Acetyltransferasen gehört. Alle Enzyme der Familie haben einHxxxD und ein DFGWG-Motiv zu 100 % konserviert. Basierendauf diesen Homologievergleichen und Inhibitorstudien wurden11 in dieser Proteinfamilie konservierte Aminosäuren gegenAlanin ausgetauscht, um so die Aminosäuren einer in derLiteratur postulierten katalytischen Triade(Ser/Cys-His-Asp) zu identifizieren.Die Mutation aller vorhandenen konservierten Serine undCysteine resultierte in keiner Mutante, die zumvollständigen Aktivitätsverlust des Enzyms führte. Nur dieMutationen H160A und D164A resultierten in einemvollständigen Aktivitätsverlust des Enzyms. Dieses Ergebniswiderlegt die Theorie einer katalytischen Triade und zeigte,dass die Aminosäuren H160A und D164A exklusiv an derkatalytischen Reaktion beteiligt sind.Zur Überprüfung dieser Ergebnisse und zur vollständigenAufklärung des Reaktionsmechanismus wurde dieVinorin-Synthase kristallisiert. Die bis jetzt erhaltenenKristalle (Kristallgröße in µm x: 150, y: 200, z: 200)gehören der Raumgruppe P212121 (orthorhombisch primitiv) anund beugen bis 3.3 Å. Da es bis jetzt keine Kristallstruktureines zur Vinorin-Synthase homologen Proteins gibt, konntedie Struktur noch nicht vollständig aufgeklärt werden. ZurLösung des Phasenproblems wird mit der Methode der multiplenanomalen Dispersion (MAD) jetzt versucht, die ersteKristallstruktur in dieser Enzymfamilie aufzuklären.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Epidermal growth factor (EGF) is excreted in a high concentration in human saliva and modulates the growth and differentiation of various cancer cells. To elucidate the molecular mechanisms by which EGF affects oral cancer growth and invasion, we analyzed the Matrigel invasion activity of the cultured oral cancer cell line. Cells grown under the influence of EGF were subjected to Matrigel invasion assays and cells grown in the absence of EGF were used as controls. Gelatin-zymography and Northern blot analyses quantified the invasiveness and tumorigenicity. Chloramphenicol acetyltransferase assay (CAT assay) determined the EGF stimulation of matrix metalloproteinase (MMP) expression. EGF increased the number of cells penetrating a Matrigel membrane. Gelatin-zymography and Northern blot analysis revealed that MMP9 and Ets1 expressions correlated with EGF but MMP2 was not changed. a transient transfection assay revealed that EGF increased the promoter activities of the MMP9 genes in HSC3 and SAS cells. These results suggest that EGF increases the invasion activity of oral cancer cells partly by increasing MMP9.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Human placental lactogen (hPL) and human growth hormone (hGH) comprise a multigene family that share $>$90% nucleic acid sequence homology including 500 bp of 5$\sp\prime$ flanking sequence. Despite these similarities, hGH is produced in the anterior pituitary while hPL is expressed in the placenta. For most genes studied to date, regulation of expression occurs by alterations at the level of transcriptional initiation. Nuclear proteins bind specific DNA sequences in the promoter to regulate gene expression. In this study, the hPL$\sb3$ promoter was analyzed for DNA sequences that contribute to its expression. The interaction between the hPL$\sb3$ promoter and nuclear proteins was examined using nuclear extracts from placental and non-placental cells.^ To identify regulatory elements in the promoter of the hPL$\sb3$ gene, 5$\sp\prime$ deletion mutants were constructed by cleaving 1200 bp of upstream sequence with various restriction enzymes. These DNA fragments were ligated 5$\sp\prime$ to a promoterless bacterial gene chloramphenicol acetyltransferase (CAT) and transfected into JEG-3 cells, a human placental choriocarcinoma cell line. The level of CAT activity reflects the ability of the promoter mutants to activate transcription. Deletion of the sequence between $-$142 bp and $-$129 bp, relative to the start of transcription, resulted in an 8-fold decrease in CAT activity. Nuclear proteins from JEG-3, HeLa, and HepG2 (human liver cells), formed specific binding complexes with this region of the hPL$\sb3$ promoter, as shown by gel mobility shift assay. The $-$142 bp to $-$129 bp region contains a sequence similar to that of a variant binding site for the transcription factor Sp1. Sp1-like proteins were identified by DNA binding assay, in the nuclear extracts of the three cell lines. A series of G nucleotides in the hPL$\sb3$ promoter regulatory region were identified by methylation interference assay to interact with the DNA-binding proteins and the pattern obtained is similar to that for other Sp1 binding sites that have been studied. This suggests that hPL$\sb3$ may be transcriptionally regulated by Sp1 or a Sp1-like transacting factor. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Spec genes serve as molecular markers for examining the ontogeny of the aboral ectoderm lineage of sea urchin embryos. These genes are activated at late-cleavage stage only in cells contributing to the aboral ectoderm of Strongylocentrotus purpuratus and encode 14,000-17,000 Da calcium-binding proteins. A comparative analysis was undertaken to better understand the mechanisms underlying the activation and function of the Spec genes by investigating Spec homologues from Lytechinus pictus, a distantly related sea urchin. Spec antibodies cross-reacted with 34,000 Da proteins in L. pictus embryos that displayed a similar ontogenetic pattern to that of Spec proteins. One cDNA clone, LpS1, was isolated by hybridization to a synthetic oligonucleotide corresponding to a calcium-binding domain or EF-hand. The LpS1 mRNA has developmental properties similar to those of the Spec mRNAs. LpS1 encodes a 34,000 Da protein containing eight EF-hand domains, which share structural homology with the Spec EF-hands; however, little else in the protein sequence is conserved, implying that calcium-binding is important for Spec protein function. Genomic DNA blot analysis showed two LpS1 genes, LpS1$\alpha$ and LpS1$\beta$, in L. pictus. Partial gene structures for both LpS1$\alpha$ and $\beta$ were constructed based on genomic clones isolated from an L. pictus genomic library. These revealed internal duplications of the LpS1 genes that accounted for the eight EF-hand domains in the LpS1 proteins. Sequencing analysis showed there was little in common among the 5$\sp\prime$-flanking regions of the LpS1 and Spec genes except for the presence of a binding site for the transcription factor USF.^ A sea urchin gene-transfer expression system showed that 762 base pairs (bp) of 5$\sp\prime$-flanking DNA from the LpS1$\beta$ gene were sufficient for correct temporal and spatial expression of reporter genes in sea urchin embryos. Deletions at the 5$\sp\prime$ end to 511, 368, or 108bp resulted in a 3-4 fold decrease in chloramphenicol acetyltransferase (CAT) activity and disrupted the restricted activation of the lac Z gene in aboral ectoderm cells.^ A full-length Spec1 protein and a truncated LpS1 protein were induced and partially purified from an in vitro expression system. (Abstract shortened with permission of author.) ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Analyses of rat T1 kininogen gene/chloramphenicol acetyltransferase (T1K/CAT) constructs revealed two regions important for tissue-specific and induced regulation of T1 kininogen.^ Although the T1 kininogen gene is inducible by inflammatory cytokines, a highly homologous K kininogen gene is minimally responsive. Moreover, the basal expression of a KK/CAT construct was 5- to 7-fold higher than that of the analogous T1K/CAT construct. To examine the molecular basis of this differential regulation, a series of promoter swapping experiments was carried out. Our transfection results showed that at least two regions in the K kininogen gene are important for its high basal expression: a distal 19-bp region (C box) constituted a binding site for CCAAT/enhancer binding protein (C/EBP) family proteins and a proximal 66-bp region contained two adjacent binding sites for hepatocyte nuclear factor-3 (HNF-3). The distal HNF-3 binding site from the K kininogen promoter demonstrated a stronger affinity than that from the T1 kininogen promoter. Since C/EBP and HNF-3 are highly enriched in the liver and known to enhance transcription of liver-specific genes, differential binding affinities of these factors accounted for the higher basal expression of the K kininogen gene.^ In contrast to the K kininogen C box, the T1 kininogen C box does not bind C/EBP presumably due to their two-nucleotide divergence. This sequence divergence, however, converts it to a consensus binding sequence for two IL-6-inducible transcription factors--IL-6 response element binding protein and acute-phase response factor. To functionally determine whether C box sequences are important for their differential acute-phase response, T1 and K kininogen C boxes were swapped and analyzed after transfection into Hep3B cells. Our results showed that the T1 kininogen C box is indeed one of the IL-6 response elements in T1 kininogen promoter. Furthermore, its function can be modulated by a 5$\sp\prime$-adjacent C/EBP-binding site (B box) whose mutation significantly reduced the overall induced activity. Moreover, this B box is the target site for binding and transactivation of another IL-6 inducible transcription factor C/EBP$\delta.$ Evolutionary divergence of a few critical nucleotides can either lead to subtle changes in the binding affinities of a given transcription factor or convert a binding sequence for a constitutive factor to a site recognized by an inducible factor. (Abstract shortened by UMI.) ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

$\beta$1,4-Galactosyltransferase (GalTase) is unusual among the glycosyltransferases in that it is found in two subcellular compartments where it performs different functions. In the trans-Golgi complex, GalTase participates in oligosaccharide biosynthesis as do other glycosyltransferases. GalTase is also found on the cell surface, where it associates with the cytoskeleton and functions as a receptor for extracellular oligosaccharide ligands. Although we know much regarding GalTase function on the cell surface, little is known about the mechanisms underlying its transport to the plasma membrane. Cloning of the GalTase gene revealed that there are two GalTase proteins (i.e., long and short) with different size cytoplasmic tails. This raises the possibility that differences in the cytoplasmic domain of GalTase may influence its subcellular distribution. The object of this study was to examine this hypothesis directly through the use of molecular, immunological, and biochemical approaches.^ To examine whether the two GalTase proteins are targeted to different subcellular compartments, F9 embryonal carcinoma cells were transfected with either long or short GalTase cDNAs and intracellular and cell surface enzyme levels measured. Cell surface GalTase activity was enriched in cells overexpressing the long, but not the form of short GalTase. Furthermore, a dominant negative mutation in cell surface GalTase was created by transfecting cells with GalTase cDNAs encoding a truncated version of long GalTase devoid of the extracellular catalytic domain. Overexpressing the complete cytoplasmic and transmembrane domains of long GalTase led to a loss of GalTase-dependent cellular adhesion by specifically displacing surface GalTase from its cytoskeletal associations. In contrast, overexpressing the analogous truncated protein of short GalTase had no effect on cell adhesion. Finally, chloramphenicol acetyltransferase (CAT) reporter proteins were used to determine directly whether the cytoplasmic domains of long and short GalTase were responsible for differential subcellular distribution. The cytoplasmic and transmembrane domains of long GalTase led to CAT expression on the ceil surface and its association with the detergent-insoluble cytoskeleton; the analogous fusion protein containing short GalTase was restricted to the Golgi compartment. These results suggest that the cytoplasmic domain unique to long GalTase is responsible for targeting a portion of this protein to the cell surface and associating it with the cytoskeleton, enabling it to function as a cell adhesion molecule. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The complete 50,237-bp DNA sequence of the conjugative and mobilizing multiresistance plasmid pRE25 from Enterococcus faecalis RE25 was determined. The plasmid had 58 putative open reading frames, 5 of which encode resistance to 12 antimicrobials. Chloramphenicol acetyltransferase and the 23S RNA methylase are identical to gene products of the broad-host-range plasmid pIP501 from Streptococcus agalactiae. In addition, a 30.5-kb segment is almost identical to pIP501. Genes encoding an aminoglycoside 6-adenylyltransferase, a streptothricin acetyltransferase, and an aminoglycoside phosphotransferase are arranged in tandem on a 7.4-kb fragment as previously reported in Tn5405 from Staphylococcus aureus and in pJH1 from E. faecalis. One interrupted and five complete IS elements as well as three replication genes were also identified. pRE25 was transferred by conjugation to E. faecalis, Listeria innocua, and Lactococcus lactis by means of a transfer region that appears similar to that of pIP501. It is concluded that pRE25 may contribute to the further spread of antibiotic-resistant microorganisms via food into the human community.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coagulase-negative staphylococci were isolated from different raw milk cheeses and raw meat products and screened for their antibiotic resistances. They were identified as Staphylococcus xylosus, S. lentus, S. caprae, S. epidemidis and S. haemolyticus. The most frequent resistances found were those to chloramphenicol, tetracycline, erythromycin and lincomycin. They have been characterized on the molecular level. The chloramphenicol resistance genes were localized in several S. xylosus and S. caprae on plasmids with sizes ranging from 3.8-kb to 4.3-kb and were identified as chloramphenicol acetyltransferase (cat). All the tetracycline resistant strains were identified as S. xylosus and harboured a 4.4-kb plasmid carrying the tetracycline efflux resistance gene (tetK). The two erythromycin/lincomycin resistant S. caprae and S. epidermidis strains did not hybridize with the MLSB resistance genes ermAM, ermA, ermB and ermC. Three erythromycin resistant Staphylococcus sp. strains harboured an erythromycin efflux resistance gene (msr) localized twice on a 18-kb plasmid and once on the chromosome. A S. haemolyticus strain showing resistance to both lincomycin and clindamycin harboured a linA gene-carrying 2.2-kb plasmid. Further resistances to gentamicin, penicillin and kanamycin were less frequently observed and yet not characterized on a molecular level.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of DNA cytosine methylation on H-ras promoter activity was assessed using a transient expression system employing the plasmid H-rasCAT (NaeI H-ras promoter linked to the chloramphenicol acetyltransferase (CAT) gene). This 551 bp promoter is 80% GC rich, enriched with 168 CpG dinucleotides, and contains six functional GC box elements which represent major DNA methylation target sites. Prokaryotic methyltransferases HhaI (CGm$\sp5$CG) and HpaII (Cm$\sp5$CGG) alone or in combination with a human placental methyltransferase (HP MTase) were used to introduce methyl groups at different CpG sites within the promoter. To test for functional promoter activity, the methylated plasmids were introduced into CV-1 cells and CAT activity assessed 48 h post-transfection. Methylation at specific HhaI and HpaII sites reduced CAT expression by 70%, whereas more extensive methylation at generalized CpG sites with HP MTase inactivated the promoter $>$95%. The inhibition of H-ras promoter activity was not attributable to methylation-induced differences in DNA uptake or stability in the cell, topological form of the plasmid, or methylation effects in nonpromoter regions. We also observed that DNA cytosine methylation of a 360 bp promoter fragment by HP MTase induced a local change in DNA conformation. Using three independent methodologies (nitrocellulose filter binding assays, gel mobility shifts, and Southwestern blots), we determined that this change in promoter conformation affected the interaction of nuclear proteins with cis-regulatory sequences residing in the promoter region. The results provide evidence to suggest that DNA methylation may regulate gene expression by inducing changes in local promoter conformation which in turn alters the interactions between DNA and protein factors required for transcription. The results provide supportive evidence for the hypothesis of Cedar and Riggs, who postulated that DNA methylation may regulate gene expression by altering the binding affinities of proteins for DNA. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The first part of my research involved the characterization of the neu gene promoter. I subcloned a 2.2-kb sequence located upstream to the extreme 5$\sp\prime$ end of the neu gene, in front of the bacterial reporter gene, chloramphenicol acetyltransferase (CAT). Transfection of this construct into different cell lines and subsequent CAT assays demonstrated that this 2.2-kb fragment was functional as a promoter. A series of deletion constructs was engineered to study the contribution of different fragments to transcription. Subcloning of individual fragments was followed by a cotransfection competition experiment, which demonstrated the involvement of protein factors interacting with the promoter. A gel retardation assay was also performed to show the physical binding of protein factors to the promoter. The combined results suggested that both positively and negatively acting protein factors are involved in interacting with different regions of the promoter, contributing to the overall transcription activity. My findings provide an insight into the regulation of neu gene expression, which in turn provides the tools to understand the molecular mechanisms of overexpression of the neu gene in some breast cancer and ovarian cancer cell lines.^ In the second part of my research, I discovered that another oncogene, c-myc, was able to reverse the transformed morphology that was induced by the neu oncogene. Utilizing the promoter constructs that I made, I was able to show that the c-myc oncogene has a negative regulatory effect on the expression of the neu oncogene. Further studies suggested that c-myc is able to lower the effective concentration of a positive factor(s) that interact with a 139-bp fragment of the neu gene promoter. These findings may provide a direct evidence of the long suspected role of the c-myc gene in transcriptional regulation. The neu gene may very well be the first identified mammalian target gene that is regulated by the c-myc oncogene. Since c-myc is known to be stimulated by various mitogenic signals and the neu gene is likely to be a growth factor receptor, it is possible that c-myc, when stimulated by the signal transduction pathway of the neu gene, would function as a negative feedback regulator on the neu gene receptor. (Abstract shortened with permission of author.) ^