164 resultados para Chisel plough


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Information on the effects of growing cotton (Gossypium hirsutum L.)-based crop rotations on soil quality of dryland Vertisols is sparse. The objective of this study was to quantify the effects of growing cereal and leguminous crops in rotation with dryland cotton on physical and chemical properties of a grey Vertisol near Warra, SE Queensland, Australia. The experimental treatments, selected after consultations with local cotton growers, were continuous cotton (T1), cotton-sorghum (Sorghum bicolor (L.) Moench.) (T2), cotton-wheat (Triticum aestivum L.) double cropped (T3), cotton-chickpea (Cicer arietinum L.) double cropped followed by wheat (T4) and cotton-wheat (T5). From 1993 to 1996 land preparation was by chisel ploughing to about 0.2 m followed by two to four cultivations with a Gyral tyne cultivator. Thereafter all crops were sown with zero tillage except for cultivation with a chisel plough to about 0.07-0.1 m after cotton picking to control heliothis moth pupae. Soil was sampled from 1996 to 2004 and physical (air-filled porosity of oven-dried soil, an indicator of soil compaction; plastic limit; linear shrinkage; dispersion index) and chemical (pH in 0.01 M CaCl2, organic carbon, exchangeable Ca, Mg, K and Na contents) properties measured. Crop rotation affected soil properties only with respect to exchangeable Na content and air-filled porosity. In the surface 0.15 m during 2000 and 2001 lowest air-filled porosity occurred with T1 (average of 34.6 m3/100 m3) and the highest with T3 (average of 38.9 m3/100 m3). Air-filled porosity decreased in the same depth between 1997 and 1998 from 45.0 to 36.1 m3/100 m3, presumably due to smearing and compaction caused by shallow cultivation in wet soil. In the subsoil, T1 and T2 frequently had lower air-filled porosity values in comparison with T3, T4 and T5, particularly during the early stages of the experiment, although values under T1 increased subsequently. In general, compaction was less under rotations which included a wheat crop (T3, T4, T5). For example, average air-filled porosity (in m3/100 m3) in the 0.15-0.30 m depth from 1996 to 1999 was 19.8 with both T1 and T2, and 21.2 with T3, 21.1 with T4 and 21.5 with T5. From 2000 to 2004, average air-filled porosity (in m3/100 m3) in the same depth was 21.3 with T1, 19.0 with T2, 19.8 with T3, 20.0 with T4 and 20.5 with T5. The rotation which included chickpea (T4) resulted in the lowest exchangeable Na content, although differences among rotations were small. Where only a cereal crop with a fibrous root system was sown in rotation with cotton (T2, T3, T5) linear shrinkage in the 0.45-0.60 m depth was lower than in rotations, which included tap-rooted crops such as chickpea (T4) or continuous cotton (T1). Dispersion index and organic carbon decreased, and plastic limit increased with time. Soil organic carbon stocks decreased at a rate of 1.2 Mg/ha/year. Lowest average cotton lint yield occurred with T2 (0.54 Mg/ha) and highest wheat yield with T3 (2.8 Mg/ha). Rotations which include a wheat crop are more likely to result in better soil structure and cotton lint yield than cotton-sorghum or continuous cotton.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In 2001 a scoping study (phase I) was commissioned to determine and prioritise the weed issues of cropping systems with dryland cotton. The main findings were that the weed flora was diverse, cropping systems complex, and weeds had a major financial and economical impact. Phase II 'Best weed management strategies for dryland cropping systems with cotton' focused on improved management of the key weeds, bladder ketmia, sowthistle, fleabane, barnyard grass and liverseed grass.In Phase III 'Improving management of summer weeds in dryland cropping systems with cotton', more information on the seed-bank dynamics of key weeds was gained in six pot and field studies. The studies found that these characteristics differed between species, and even climate in the case of bladder ketmia. Species such as sowthistle, fleabane and barnyard grass emerged predominately from the surface soil. Sweet summer grass was also in this category but also had a significant proportion emerging from 5 cm depth. Bladder ketmia in central Queensland emerged mainly from the top 2 cm, whereas in southern Queensland it emerged mainly from 5 cm. Liverseed grass had its highest emergence from 5 cm below the surface. In all cases the persistence of seed increased with increasing soil depth. Fleabane was also found to be sensitive to soil type with no seedlings emerging in the self-mulching black vertisol soil. A strategic tillage trial showed that burial of fleabane seed, using a disc or chisel plough, to a depth of greater than 2 cm can significantly reduce subsequent fleabane emergence. In contrast, tillage increased barnyard grass emergence and tended to decrease persistence. This research showed that weed management plans can not be blanketed across all weed species, rather they need to be targeted for each main weed species.This project has also resulted in an increased knowledge of how to manage fleabane from the eight experiments; one in wheat, two in sorghum, one in cotton and three in fallow on double knock. For summer crops, the best option is to apply a highly effective fallow treatment prior to sowing the crops. For winter crops, the strategy is the integration of competitive crops, residual herbicide followed by a knockdown to control survivors. This project explored further the usefulness of the double knock tactic for weed control and preventing seed set. Two field and one pot experiments have shown that this tactic was highly effective for fleabane control. Paraquat products provided good control when followed by glyphosate. When 2, 4-D was added in a tank mix with glyphosate and followed by paraquat products, 99-100% control was achieved in all cases. The ideal follow-up times for paraquat products after glyphosate were 5-7 days. The preferred follow-up times for 2, 4-D after glyphosate were on the same day and one day later. The pot trial, which compared a population from a cropping field with previous glyphosate exposure and a population from a non-cropping area with no previous glyphosate herbicide exposure, showed that the pervious herbicide exposure affected the response of fleabane to herbicidal control measures. The web-based brochure on managing fleabane has been updated.Knowledge on management of summer grasses and safe use of residual herbicides was derived from eight field and pot experiments. Residual grass and broadleaf weed control was excellent with atrazine pre-plant and at-planting treatments, provided rain was received within a short interval after application. Highly effective fallow treatments (cultivation and double knock), not only gave excellent grass control in the fallow, also gave very good control in the following cotton. In the five re-cropping experiments, there were no adverse impacts on cotton from atrazine, metolachlor, metsulfuron and chlorsulfuron residues following use in previous sorghum, wheat and fallows. However, imazapic residues did reduce cotton growth.The development of strategies to reduce the heavy reliance on glyphosate in our cropping systems, and therefore minimise the risk of glyphosate resistance development, was a key factor in the research undertaken. This work included identifying suitable tactics for summer grass control, such as double knock with glyphosate followed by paraquat and tillage. Research on fleabane also concentrated on minimising emergence through tillage, and applying the double knock tactic. Our studies have shown that these strategies can be used to prevent seed set with the goal of driving down the seed bank. Utilisation of the strategies will also reduce the reliance on glyphosate, and therefore reduce the risk of glyphosate resistance developing in our cropping systems.Information from this research, including ecological and management data were collected from an additional eight paddock monitoring sites, was also incorporated into the Weeds CRC seed bank model "Weed Seed Wizard", which will be able to predict the impact of different management options on weed populations in cotton and grain farming systems. Extensive communication activities were undertaken throughout this project to ensure adoption of the new strategies for improved weed management and reduced risk for glyphosate resistance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Investigations were conducted during the 2003, 2004 and 2005 growing seasons in northern Greece to evaluate effects of tillage regime (mouldboard plough, chisel plough and rotary tiller), cropping sequence (continuous cotton, cotton-sugar beet rotation and continuous tobacco) and herbicide treatment on weed seedbank dynamics. Amaranthus spp. and Portulaca oleracea were the most abundant species, ranging from 76% to 89% of total weed seeds found in 0-15 and 15-30 cm soil depths during the 3 years. With the mouldboard plough, 48% and 52% of the weed seedbank was found in the 0-15 and 15-30 cm soil horizons, while approximately 60% was concentrated in the upper 15 cm soil horizon for chisel plough and rotary tillage. Mouldboard ploughing significantly buried more Echinochloa crus-galli seeds in the 15-30 cm soil horizon compared with the other tillage regimes. Total seedbank (0-30 cm) of P. oleracea was significantly reduced in cotton-sugar beet rotation compared with cotton and tobacco monocultures, while the opposite occurred for E. crus-galli. Total seed densities of most annual broad-leaved weed species (Amaranthus spp., P. oleracea, Solanum nigrum) and E. crus-galli were lower in herbicide treated than in untreated plots. The results suggest that in light textured soils, conventional tillage with herbicide use gradually reduces seed density of small seeded weed species in the top 15 cm over several years. In contrast, crop rotation with the early established sugar beet favours spring-germinating grass weed species, but also prevents establishment of summer-germinating weed species by the early developing crop canopy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to evaluate the influence of preparation: intermediate grade, minimum tillage and no-till on the agronomic characteristics and energy demand of transgenic soybean cultivars and non-GMO soybeans. Soil preparation aims at improving physical, chemical and biological conditions, aiming at good emergence and plant development. The different types of tillage may interfere with the agronomic characteristics and productivity of plants, and in energy use which can cause variation in production costs. Genetically modified plants can be one of the alternatives for reduction of production costs in crops by reducing pesticide applications, enabling higher productivity with less environmental impact. The test was conducted in 2010/2011 at the agricultural Experimental Farm Lageado, belonging to the Faculty of Agronomic Sciences – UNESP, located in the city of Botucatu, SP in an area using no-till systems for the past 12 years. The experiment was carried out in a 3 x 2 factorial, randomized treatments were comprised of three soil preparation systems, minimum cultivation, intermediate grade preparation and no-till, with two cultivars of soybeans: MGBR-46 Conquest (conventional), Valuable RR (Transgenic). The data obtained was submitted to variance analysis using Tukey test at a 5% probability. With the results analyzed it might be observed that there was no significant difference between treatments, in the variables, the percentage of soil cover, final soybean plant population, grain yield and plant height. The results obtained show that the no-till system resulted in higher productivity than conventional tillage and minimum cultivation. The higher specific energy use per area was observed in minimum cultivation with a chisel plough, when compared to the preparation across the grid. The greatest fuel consumption was to treat minimum cultivation with chisel plough. The highest values were found in the skating system of minimum cultivation, being greater in conventional tillage system. It is more satisfactory for the producer to sow transgenic soy using a no-till system, because productivity retrieved from that system compensates for fuel expenditure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The behavior of simetryn and thiobencarb in flooded rice soil was investigated in a 2-year study. The concentrations of simetryn and thiobencarb were in the hundreds of μg kg-1 in the top soil layer (0-5 cm) and became significantly lower in tens of μg kg-1 in the deeper soil layers (5-10 and 10-15 cm). The half-lives of the two herbicides were also shorter (36 and 17 days for simetryn and thiobencarb, respectively) in the top soil layer, as they were most affected by environmental conditions, compared with corresponding values of 82 and 69 days in the 5-10 cm soil layer. Simetryn concentration was stable, while thiobencarb's half-life was 165 days in the 10-15 cm layer. About 35% of the applied mass of simetryn and thiobencarb were found in the rice soil compartment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dancing was an important pastime in colonial society. People would dance to celebrate events such as weddings and harvests, but also as a general recreational activity. Dancing is a shared experience which forges and maintains a sense of community and cultural identity – a sense of belonging. This was significant in the new land, where many people had left their families and friends behind. Speed the Plough was a very popular English country dance which came from a play of the same name, first performed in London in 1798.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Yhteenveto: Viljelymenetelmien vaikutus eroosioon ja ravinteiden huuhtoutumiseen

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The discovery of an unusual early medieval plough coulter in a well-dated Anglo-Saxon settlement context in Kent suggests that continentally derived technology was in use in this powerful kingdom centuries before heavy ploughs were first depicted in Late Saxon manuscripts. The substantial investment required to manufacture the coulter, the significant damage and wear that it sustained during use and the circumstances of its ultimate ritual deposition are explored. Investigative conservation, high-resolution recording and metallographic analysis illuminate the form, function and use-life of the coulter. An examination of the deposition contexts of plough-irons in early medieval northern Europe sheds important new light on the ritual actions of plough symbolism in an age of religious hybridity and transformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Farmers in central and north central Iowa are often criticized for low adoption of no-tillage. No-tillage is often faulted with cooler, wetter soils and subsequently reduced yields. An alternative to conventional tillage and no-tillage systems is strip tillage where the benefits of both may be combined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

No-till management limits the incorporation of crop residue and fertilizer with soil resulting in wetter, colder soils and the accumulation of organic matter, phosphorus (P), and potassium (K) near the soil surface. Banding of P and K could be more effective than broadcast fertilization by counteracting stratification, applying nutrients in the root zone (starter effect), and minimizing reactions with the soil that may reduce their availability to plants. Therefore, this long-term study was established in 1994 to evaluate P and K fertilizer placement methods and grain yield of corn-soybean rotations managed with notill and chisel-plow/disk tillage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After 14 years under conventional plough tillage (CT) or conservation minimum tillage (MT), the soil available Al, Fe, Mn, Cu and Zn (0-5, 5-15 and 15-30 cm layers) and their plant uptake were evaluated during two years in a ryegrass-maize forage rotation in NW Spain (t emperate-humid region). The three-way ANOVA showed that trace element concentrations in soil were mainly influenced by sampling date, followed by soil depth and tillage system (35-73 %, 7-58 % and 3- 11 % of variance explained, respectively). Excepting for Fe (CT) and Al (CT and MT), the elemental concentrations decreased with depth, the stratification being stronger under MT. For soil available Al, Fe, Mn and Cu, the concentrations were higher in CT than in MT (5-15 and 15-30 cm layers) or were not affected by tillage system (0-5 cm). In contrast, the available Zn contents were higher in MT than CT at the soil surface and did not differ in deeper layers. The concentration of Al, Fe and Cu in crops were not influenced by tillage system, which explain 22 % of Mn variance in maize (CT > MT in the more humid year) and 18 % of Zn variance in ryegrass (MT > CT in both years). However, in the summer crop (maize) the concentrations of Fe, Mn and Zn tended to be higher in MT than in CT under drought conditions, while the opposite was true in the year without water limitation. Therefore, under the studied conditions of climate, soil, tillage and crop rotation, little influence of tillage system on crop nutritive value would be expected. To minimize the potential deficiency of Zn (maize) and Cu (maize and ryegrass) on crop yields the inclusion of these micro-nutrients in fertilization schedule is reco mmended, as well as liming to alleviate Al toxicity on maize crops.

Relevância:

20.00% 20.00%

Publicador: