815 resultados para Chip sample
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Mapeamento geológico no alvo Morro do Corcunda - Greenstone Belt Pilar de Goiás (Santa Terezinha-GO)
Resumo:
The following work refers to a geologic mapping in the Morro do Corcunda target, located between the cities of Pilar of Goiás and Santa Terezinha in the northwest portion of the State of Goiás. This mapping was carried through in 1:10,000 scale and covers an area of approximately 60km2. Collections of samples had been carried through for laborarorial analysis, and from those twenty-three thin scetions have been produced in order to describe the main lithologies that occur in the area. It was possible to observe anomalous gold targets in the region through chip samples carried through during the stage of field work. The gathered field data and the ones that have been made available by the company Yamana Gold Incorporation were congregated, and a data integration was carried through. This integration made possible the correlation of the litologies found in field with the Greenstone Belt Pilar de Goiás sequence and the structural evolution of the area.
Resumo:
Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) experiments are widely used to determine, within entire genomes, the occupancy sites of any protein of interest, including, for example, transcription factors, RNA polymerases, or histones with or without various modifications. In addition to allowing the determination of occupancy sites within one cell type and under one condition, this method allows, in principle, the establishment and comparison of occupancy maps in various cell types, tissues, and conditions. Such comparisons require, however, that samples be normalized. Widely used normalization methods that include a quantile normalization step perform well when factor occupancy varies at a subset of sites, but may miss uniform genome-wide increases or decreases in site occupancy. We describe a spike adjustment procedure (SAP) that, unlike commonly used normalization methods intervening at the analysis stage, entails an experimental step prior to immunoprecipitation. A constant, low amount from a single batch of chromatin of a foreign genome is added to the experimental chromatin. This "spike" chromatin then serves as an internal control to which the experimental signals can be adjusted. We show that the method improves similarity between replicates and reveals biological differences including global and largely uniform changes.
Resumo:
The present paper reports a bacteria autonomous controlled concentrator prototype with a user-friendly interface for bench-top applications. It is based on a micro-fluidic lab-on-a-chip and its associated custom instrumentation, which consists in a dielectrophoretic actuator, to pre-concentrate the sample, and an impedance analyser, to measure concentrated bacteria levels. The system is composed by a single micro-fluidic chamber with interdigitated electrodes and a instrumentation with custom electronics. The prototype is supported by a real-time platform connected to a remote computer, which automatically controls the system and displays impedance data used to monitor the status of bacteria accumulation on-chip. The system automates the whole concentrating operation. Performance has been studied for controlled volumes of Escherichia coli (E. coli) samples injected into the micro-fluidic chip at constant flow rate of 10 μL/min. A media conductivity correcting protocol has been developed, as the preliminary results showed distortion of the impedance analyser measurement produced by bacterial media conductivity variations through time. With the correcting protocol, the measured impedance values were related to the quantity of bacteria concentrated with a correlation of 0.988 and a coefficient of variation of 3.1%. Feasibility of E. coli on-chip automated concentration, using the miniaturized system, has been demonstrated. Furthermore, the impedance monitoring protocol had been adjusted and optimized, to handle changes in the electrical properties of the bacteria media over time.
Resumo:
This report demonstrates a UV-embossed polymeric chip for protein separation and identification by Capillary Isoelectric Focusing (CIEF) and Matrix Assisted Laser Desportion/Ionization Mass Spectrometry (MALDI-MS). The polymeric chip has been fabricated by UV-embossing technique with high throughput; the issues in the fabrication have been addressed. In order to achieve high sensitivity of mass detection, five different types of UV curable polymer have been used as sample support to perform protein ionization in Mass Spectrometry (MS); the best results is compared to PMMA, which was the commonly used plastic chip for biomolecular separation. Experimental results show that signal from polyester is 12 times better than that of PMMA in terms of detection sensitivity. Finally, polyester chip is utilized to carry out CIEF to separate proteins, followed by MS identification.
Resumo:
OBJECTIVES: Many flow-cytometric cell characterization methods require costly markers and colour reagents. We present here a novel device for cell discrimination based on impedance measurement of electrical cell properties in a microfluidic chip, without the need of extensive sample preparation steps and the requirement of labelling dyes. MATERIALS AND METHODS, RESULTS: We demonstrate that in-flow single cell measurements in our microchip allow for discrimination of various cell line types, such as undifferentiated mouse fibroblasts 3T3-L1 and adipocytes on the one hand, or human monocytes and in vitro differentiated dendritic cells and macrophages on the other hand. In addition, viability and apoptosis analyses were carried out successfully for Jurkat cell models. Studies on several species, including bacteria or fungi, demonstrate not only the capability to enumerate these cells, but also show that even other microbiological life cycle phases can be visualized. CONCLUSIONS: These results underline the potential of impedance spectroscopy flow cytometry as a valuable complement to other known cytometers and cell detection systems.
Resumo:
This study compared initial year trends in prenatal care and birth outcomes of women enrolled in the Texas Children's Health Insurance Program (CHIP) Perinatal program to trends in Medicaid program women. The study utilized claims data from Community Health Choice (CHC), a health plan in Harris County, Texas that provides coverage to both populations. Quarterly data was analyzed and compared for the first two years of the CHIP Perinatal program (2007-2008) to determine if outcome trends for the CHIP program improved over the outcome trends seen with those enrolled in Medicaid. Study findings indicate an increase in the quarterly prenatal care utilization for the CHIP Perinatal population from 2007 to 2008 and the associated birth weights of babies delivered also had marginal improvements during the same timeframe. Enrollees in Medicaid continued to have overall better outcomes than those enrolled within the CHIP Perinatal program. However, the study showed that the rate of improvement in both prenatal care utilization and birth outcomes were greater for the CHIP Perinatal enrollees than those enrolled in Medicaid. ^ The majority of these improvements were significant when comparing each coverage program and from year to year. Lastly, the study showed that there was a correlation between prenatal care utilization and birth outcomes. However, further analysis of the data could not conclusively indicate that access to prenatal care services provided by the CHIP Perinatal program contributed to the increases observed in utilization and birth outcomes for the study's sample population.^
Resumo:
Immunoprecipitation (IP) is one of the most widely used and selective techniques for protein purification. Here, a miniaturised, polymer-supported immunoprecipitation (µIP) method for the on-chip purification of proteins from complex mixtures is described. A 4 µl PDMS column functionalised with covalently bound antibodies was created and all critical aspects of the µIP protocol (antibody immobilisation, blocking of potential non-specific adsorption sites, sample incubation and washing conditions) were assessed and optimised. The optimised µIP method was used to obtain purified fractions of affinity-tagged protein from a bacterial lysate.
Resumo:
In the clinical/microbiological laboratory there are currently several ways of separating specific cells from a fluid suspension. Conventionally cells can be separated based on size, density, electrical charge, light-scattering properties, and antigenic surface properties. Separating cells using these parameters can require complex technologies and specialist equipment. This paper proposes new Bio-MEMS (microelectromechanical systems) filtration chips manufactured using deep reactive ion etching (DRIE) technology that, when used in conjunction with an optical microscope and a syringe, can filter and grade cells for size without the requirement for additional expensive equipment. These chips also offer great versatility in terms of design and their low cost allows them to be disposable, eliminating sample contamination. The pumping mechanism, unlike many other current filtration techniques, leaves samples mechanically and chemically undamaged. In this paper the principles behind harnessing passive pumping are explored, modelled, and validated against empirical data, and their integration into a microfluidic device to separate cells from a mixed population suspension is described. The design, means of manufacture, and results from preliminary tests are also presented. © IMechE 2007.
Resumo:
As the pressure continues to grow on Diamond and the world's synchrotrons for higher throughput of diffraction experiments, new and novel techniques are required for presenting micron dimension crystals to the X ray beam. Currently this task is both labour intensive and primarily a serial process. Diffraction measurements typically take milliseconds but sample preparation and presentation can reduce throughput down to 4 measurements an hour. With beamline waiting times as long as two years it is of key importance for researchers to capitalize on available beam time, generating as much data as possible. Other approaches detailed in the literature [1] [2] [3] are very much skewed towards automating, with robotics, the actions of a human protocols. The work detailed here is the development and discussion of a bottom up approach relying on SSAW self assembly, including material selection, microfluidic integration and tuning of the acoustic cavity to order the protein crystals.
Resumo:
As the pressure continues to grow on Diamond and the world's synchrotrons for higher throughput of diffraction experiments, new and novel techniques are required for presenting micron dimension crystals to the X ray beam. Currently this task is both labour intensive and primarily a serial process. Diffraction measurements typically take milliseconds but sample preparation and presentation can reduce throughput down to 4 measurements an hour. With beamline waiting times as long as two years it is of key importance for researchers to capitalize on available beam time, generating as much data as possible. Other approaches detailed in the literature [1] [2] [3] are very much skewed towards automating, with robotics, the actions of a human protocols. The work detailed here is the development and discussion of a bottom up approach relying on SSAW self assembly, including material selection, microfluidic integration and tuning of the acoustic cavity to order the protein crystals.
Resumo:
Tese de Doutoramento em Ciências Veterinárias, Especialidade de Ciências Biológicas e Biomédicas
Resumo:
Current data indicate that the size of high-density lipoprotein (HDL) may be considered an important marker for cardiovascular disease risk. We established reference values of mean HDL size and volume in an asymptomatic representative Brazilian population sample (n=590) and their associations with metabolic parameters by gender. Size and volume were determined in HDL isolated from plasma by polyethyleneglycol precipitation of apoB-containing lipoproteins and measured using the dynamic light scattering (DLS) technique. Although the gender and age distributions agreed with other studies, the mean HDL size reference value was slightly lower than in some other populations. Both HDL size and volume were influenced by gender and varied according to age. HDL size was associated with age and HDL-C (total population); non- white ethnicity and CETP inversely (females); HDL-C and PLTP mass (males). On the other hand, HDL volume was determined only by HDL-C (total population and in both genders) and by PLTP mass (males). The reference values for mean HDL size and volume using the DLS technique were established in an asymptomatic and representative Brazilian population sample, as well as their related metabolic factors. HDL-C was a major determinant of HDL size and volume, which were differently modulated in females and in males.