886 resultados para Chicago Heights Refuse Depot Landfill Site.
Resumo:
"32946"--Colophon.
Resumo:
House Resolution (HR) 1010 adopted June 2004, encourages the Illinois EPA to establish a Right-to-Know Committee and to obtain citizens' input on the most effective and efficient means of providing notice to residents exposed to or potentially exposed to contamination from air, land or water. In keeping with the spirit of the resolution, Illinois EPA is conducting this pilot notification project with the assistance of the Illinois Department of Public Health and the Cook County Department of Public Health. This notice is precautionary, because of the potential for one or more sites to affect the groundwater quality in the area. There are many sites in the area that may have a potential for contaminating groundwater. The current notification has to do with information Illinois EPA has gathered in the course of investigating, monitoring and performing work on the landfill sites discussed below. These are located in the Chicago Heights/South Chicago Heights area, south of 26th Street and west of State Street (see attached map): Chicago Heights Refuse Depot, Triem Landfill and Fitzmar Landfill. A fourth landfill, Lobue, is adjacent to these, although Illinois EPA currently has very little information about that landfill. In 1987, vinyl chloride was detected in South Chicago Heights Well #3 at a level that was more than the Class I Groundwater Standard, which is 2 parts per billion. Investigation and sampling of monitoring wells at the landfill site near Well #3 showed higher concentrations of vinyl chloride (140-240 parts per million) in 1988. South Chicago Heights discontinued the use of Well #3 after this event and later stopped using all its wells and began purchasing water from Chicago Heights in 2000.
Resumo:
Areas of concern: This notification is based on information Illinois EPA has found while investigating, monitoring and working on two landfill sites in the Chicago Heights/South Chicago Heights area. Tests from groundwater and surface water at one landfill site showed levels of vinyl chloride greater than state Class I groundwater standards - the state standards that are designed to protect groundwater for use as drinking water. Vinyl chloride is from a family of chemicals known as volatile organic compounds (VOCs), which are common man-made chemicals found in cleaning solvents, gasoline and oil. These chemicals can travel in groundwater long distances from where they were spilled or dumped.
Letter health consultation : Doty Landfill site, Camanche, Iowa EPA Facility ID: IAD980497556 (2008)
Resumo:
The Doty Landfill encompasses 13 acres of land and is located in the southeastern quarter of Section 29, Township 81 North, Range 6 East, Clinton County, Iowa. The site was used as a landfill for municipal solid waste from 1970 to 1975. In addition, local residents have expressed concern that other chemical-or pesticide waste had been disposed at the site. Previous site investigations had been completed in 1992 and in 2005. In October 2007 water samples from private wells located in the vicinity of the Doty Landfill site were collected and analyzed for dissolved metals. Two of the water samples obtained from drinking water wells contained dissolved arsenic above the US EPA Maximum Contaminant Level (MCL) for arsenic of 10 μg/L (micrograms per liter) or 10 ppb (parts per billion). The water samples in question contained dissolved arsenic at concentrations of 19.3 and 14.9 μg/L or 19.3 and 14.9 ppb.
Resumo:
Feb. 1979.
Resumo:
"Cerclis No. NYD980780779."
Resumo:
Illinois EPA's initial evaluation of this site revealed problems such as erosion, exposed waste, low areas at the surface that allowed water to pond, and leachate seeps water that becomes contaminated after contact with landfill waste).
Resumo:
Landfill site from the National Priorities List (NPL). The EPA is inviting public comment on the proposed de-listing of the site from the NPL. The Iowa Department of Public Health in cooperation with the Agency for Toxic Substances and Disease Registry (ATSDR) prepared this health consultation to review the current status of the Red Oak Landfill site and to provide an evaluation of any public health consequences of de-listing the site. The information in this health consultation was current at the time of writing. Data that emerges later could alter this document’s conclusions and recommendations.
Resumo:
The aim of this report is to describe the current status of the waste-to-energy chain in the province of Northern Savonia in Finland. This work is part of the Baltic Sea Region Programme project Remowe-Regional Mobilizing of Sustainable Waste-to-Energy Production (2009-2012). Partnering regions across Baltic Sea countries have parallelly investigated the current status, bottle-necks and needs for development in their regions. Information about the current status is crucial for the further work within the Remowe project, e.g. in investigating the possible future status in target regions. Ultimate result from the Northern Savonia point of view will be a regional model which utilizes all available information and facilitates decision-making concerning energy utilization of waste. The report contains information on among others: - waste management system (sources, amounts, infrastructure) - energy system (use, supply, infrastructure) - administrative structure and legislation - actors and stakeholders in the waste-to-energy field, including interest and development ideas The current status of the regions will be compared in a separate Remowe report, with the focus on finding best practices that could be transferred among the regions. In this report, the current status has been defined as 2006-2009. In 2009, the municipal waste amount per capita was 479 kg/inhabitant in Finland. Industrial waste amounted 3550 kg/inhabitant, respectively. The potential bioenergy from biodegradable waste amounts 1 MWh/inhabitant in Northern Savonia. This figure includes animal manure, crops that would be suitable for energy use, sludge from municipal sewage treatment plants and separately collected biowaste. A key strategy influencing also to Remowe work is the waste plan for Eastern Finland. Currently there operate two digestion plants in Northern Savonia: Lehtoniemi municipal sewage treatment sludge digestion plant of Kuopion Vesi and the farm-scale research biogas plant of Agrifood Research Finland in Maaninka. Moreover, landfill gas is collected to energy use from Heinälamminrinne waste management centre and Silmäsuo closed landfill site, both belonging to Jätekukko Oy. Currently there is no thermal utilization of waste in Northern Savonia region. However, Jätekukko Oy is pretreating mixed waste and delivering refuse derived fuel (RDF) to Southern Finland to combustion. There is a strong willingness among seven regional waste management companies in Eastern Finland to build a waste incineration plant to Riikinneva waste management centre near city of Varkaus. The plant would use circulating fluidized bed (CFB) boiler. This would been a clear boost in waste-to-energy utilization in Northern Savonia and in many surrounding regions.
Resumo:
Il est reconnu que le benzène, le toluène, l’éthylbenzène et les isomères du xylène, composés organiques volatils (COVs) communément désignés BTEX, produisent des effets nocifs sur la santé humaine et sur les végétaux dépendamment de la durée et des niveaux d’exposition. Le benzène en particulier est classé cancérogène et une exposition à des concentrations supérieures à 64 g/m3 de benzène peut être fatale en 5–10 minutes. Par conséquent, la mesure en temps réel des BTEX dans l’air ambiant est essentielle pour détecter rapidement un danger associé à leur émission dans l’air et pour estimer les risques potentiels pour les êtres vivants et pour l’environnement. Dans cette thèse, une méthode d’analyse en temps réel des BTEX dans l’air ambiant a été développée et validée. La méthode est basée sur la technique d’échantillonnage direct de l’air couplée avec la spectrométrie de masse en tandem utilisant une source d’ionisation chimique à pression atmosphérique (APCI-MS/MS directe). La validation analytique a démontré la sensibilité (limite de détection LDM 1–2 μg/m3), la précision (coefficient de variation CV < 10%), l’exactitude (exactitude > 95%) et la sélectivité de la méthode. Des échantillons d’air ambiant provenant d’un site d’enfouissement de déchets industriels et de divers garages d’entretien automobile ont été analysés par la méthode développée. La comparaison des résultats avec ceux obtenus par la technique de chromatographie gazeuse on-line couplée avec un détecteur à ionisation de flamme (GC-FID) a donné des résultats similaires. La capacité de la méthode pour l’évaluation rapide des risques potentiels associés à une exposition aux BTEX a été prouvée à travers une étude de terrain avec analyse de risque pour la santé des travailleurs dans trois garages d’entretien automobile et par des expériences sous atmosphères simulées. Les concentrations mesurées dans l’air ambiant des garages étaient de 8,9–25 µg/m3 pour le benzène, 119–1156 µg/m3 pour le toluène, 9–70 µg/m3 pour l’éthylbenzène et 45–347 µg/m3 pour les xylènes. Une dose quotidienne environnementale totale entre 1,46 10-3 et 2,52 10-3 mg/kg/jour a été déterminée pour le benzène. Le risque de cancer lié à l’exposition environnementale totale au benzène estimé pour les travailleurs étudiés se situait entre 1,1 10-5 et 1,8 10-5. Une nouvelle méthode APCI-MS/MS a été également développée et validée pour l’analyse directe de l’octaméthylcyclotétrasiloxane (D4) et le décaméthylcyclopentasiloxane (D5) dans l’air et les biogaz. Le D4 et le D5 sont des siloxanes cycliques volatils largement utilisés comme solvants dans les processus industriels et les produits de consommation à la place des COVs précurseurs d’ozone troposphérique tels que les BTEX. Leur présence ubiquitaire dans les échantillons d’air ambiant, due à l’utilisation massive, suscite un besoin d’études de toxicité. De telles études requièrent des analyses qualitatives et quantitatives de traces de ces composés. Par ailleurs, la présence de traces de ces substances dans un biogaz entrave son utilisation comme source d’énergie renouvelable en causant des dommages coûteux à l’équipement. L’analyse des siloxanes dans un biogaz s’avère donc essentielle pour déterminer si le biogaz nécessite une purification avant son utilisation pour la production d’énergie. La méthode développée dans cette étude possède une bonne sensibilité (LDM 4–6 μg/m3), une bonne précision (CV < 10%), une bonne exactitude (> 93%) et une grande sélectivité. Il a été également démontré qu’en utilisant cette méthode avec l’hexaméthyl-d18-disiloxane comme étalon interne, la détection et la quantification du D4 et du D5 dans des échantillons réels de biogaz peuvent être accomplies avec une meilleure sensibilité (LDM ~ 2 μg/m3), une grande précision (CV < 5%) et une grande exactitude (> 97%). Une variété d’échantillons de biogaz prélevés au site d’enfouissement sanitaire du Complexe Environnemental de Saint-Michel à Montréal a été analysée avec succès par cette nouvelle méthode. Les concentrations mesurées étaient de 131–1275 µg/m3 pour le D4 et 250–6226 µg/m3 pour le D5. Ces résultats représentent les premières données rapportées dans la littérature sur la concentration des siloxanes D4 et D5 dans les biogaz d’enfouissement en fonction de l’âge des déchets.
Resumo:
Leachate from an untreated landfill or landfill with damaged liners will cause the pollution of soil and ground water. Here an attempt was made to generate knowledge on concentrations of all relevant pollutants in soil due to municipal solid waste landfill leachate and its migration through soil and also to study the effect of leachate on the engineering properties of soil. To identify the pollutants in soil due to the leachate generated from municipal solid waste landfill site, a case study on an unlined municipal solid waste landfill at Kalamassery has been done. Soil samples as well as water samples were collected from the site and analysed to identify the pollutants and its effect on soil characteristics. The major chemicals in the soil were identified as Ammonia, Chloride, Nitrate, Iron, Nickel, Chromium, Cadmium etc.. Engineering properties of field soil samples show that the chemicals from the leachate of landfill may have effect on the engineering properties of soil. Laboratory experiments were formulated to model the field around an unlined MSW landfill using two different soils subjected to a synthetic leachate. The Maximum change in chemical concentration and engineering property was observed on soil samples at a radial distance of 0.2 m and at a depth of 0.3 m. The pollutant (chemicals) transport pattern through the soil was also studied using synthetic leachate. To establish the effect of pollutants (chemicals) on engineering properties of soil, experiments were conducted on two types soils treated with the synthetic chemicals at four different concentrations. Analyses were conducted after maturing periods of 7, 50, 100 and 150 days. Test soils treated with maximum chemical concentration and matured for 150 days were showing major change in the properties. To visualize the flow of pollutants through soil in a broader sense, the transportation of pollutants through soil was modeled using software ‘Visual MODFLOW’. The actual field data collected for the case study was used to calibrate the modelling and thus simulated the flow pattern of the pollutants through soil around Kalamassery municipal solid waste landfill for an extent of 4 km2. Flow was analysed for a time span of 30 years in which the landfill was closed after 20 years. The concentration of leachate beneath the landfill was observed to be reduced considerably within one year after closure of landfill and within 8 years, it gets lowered to a negligible level. As an environmensstal management measure to control the pollution through leachate, permeable reactive barriers are used as an emerging technology. Here the suitability of locally available materials like coir pith, rice husk and sugar cane bagasse were investigated as reactive media in permeable reactive barrier. The test results illustrates that, among these, coir pith was showing better performance with maximum percentage reduction in concentration of the filtrate. All these three agricultural wastes can be effectively utilized as a reactive material. This research establishes the influence of leachate of municipal solid waste landfill on the engineering properties of soil. The factors such as type of the soil, composition of leachate, infiltration rate, aquifers, ground water table etc., will have a major role on the area of influence zone of the pollutants in a landfill. Software models of the landfill area can be used to predict the extent and the time span of pollution of a landfill, by inputting the accurate field parameters and leachate characteristics. The present study throws light on the role of agro waste materials on the reduction of the pollution in leachate and thus prevents the groundwater and soil from contamination
Resumo:
Many bird species are attracted to landfills which take domestic or putrescible waste. These sites provide a reliable, rich source of food which can attract large concentrations of birds. The birds may cause conflicts with human interest with respect to noise, birds carrying litter off site, possible transmission of pathogens in bird droppings and the potential for birdstrikes. In the UK there is an 8 mile safeguarding radius around an airfield, within which any planning applications must pass scrutiny from regulatory bodies to show they will not attract birds into the area and increase the birdstrike risk. Peckfield Landfill site near Leeds, West Yorkshire was chosen for a trial of a netting system designed to exclude birds from domestic waste landfills. The site was assessed for bird numbers before the trial, during the netting trial and after the net had been removed. A ScanCord net was installed for 6 weeks, during which time all household waste was tipped inside the net. Gull numbers decreased on the site from a mean of 1074 per hourly count to 29 per hourly count after two days. The gull numbers increased again after the net had been removed. Bird concentrations in the surroundings were also monitored to assess the effect of the net. Bird numbers in the immediate vicinity of the landfill site were higher than those further away. When the net was installed, the bird concentrations adjacent to the landfill site decreased. Corvids were not affected by the net as they fed on covered waste which was available outside the net throughout the trial. This shows that bird problems on a landfill site are complex, requiring a comprehensive policy of bird control. A supporting bird scaring system and clear operating policy for sites near to airports would be required.
Resumo:
Life-Patterns on the Periphery: A Humanities Base for Development Imperatives and their Application in the Chicago City-Region is informed by the need to bring diverse fields together in order to tackle issues related to the contemporary city-region. By honouring the long-term economic, social, political, and ecological imperatives that form the fabric of healthy, productive, sustainable communities, it becomes possible to setup political structures and citizen will to develop distinct places that result in the overlapping of citizen life patterns, setting the stage for citizen action and interaction. Based in humanities scholarship, the four imperatives act as checks on each other so that no one imperative is solely honoured in development. Informed by Heidegger, Arendt, deCerteau, Casey, and others, their foundation in the humanities underlines their importance, while at the same time creating a stage where all fields can contribute to actualizing this balance in practice. For this project, theoretical assistance has been greatly borrowed from architecture, planning theory, urban theory, and landscape urbanism, including scholarship from Saskia Sassen, John Friedmann, William Cronon, Jane Jacobs, Joel Garreau, Alan Berger, and many others. This project uses the Chicago city-region as a site, specifically the Interstate 80 and 88 corridors extending west from Chicago. Both transportation corridors are divided into study regions, providing the opportunity to examine a broad variety of population and development densities. Through observational research, a picture of each study region can be extrapolated, analyzed, and understood with respect to the four imperatives. This is put to use in this project by studying region-specific suggestions for future development moves, culminating in some universal steps that can be taken to develop stronger communities and set both the research site specifically and North American city-regions in general on a path towards healthy, productive, sustainable development.
Resumo:
This layer is a georeferenced raster image of the historic, topographic paper map entitled: Chicago and vicinity, Ill.-Ind. : sheet no. 3 of 3 (Blue Island), 1953, mapped, edited, and published by the Geological Survey. It was published in 1957. Scale 1:24,000. The source map was compiled from 1:24,000 scale maps of Calumet Lake, Blue Island, Palos Park, Sag Bridge, Mokena, Tinley Park, Harvey, and Calumet City 1953 7.5 minute quadrangles. Hydrography from U.S. Lake Survey Chart 755 (1:15,000). This layer is image 3 of 3 total images of the three sheet source map. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Illinois East State Plane Coordinate System NAD27 (in Feet) (Fipszone 1201). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This is a typical topographic map portraying both natural and manmade features. It shows and names works of nature, such as mountains, valleys, lakes, rivers, vegetation, etc. It also identify the principal works of humans, such as roads, railroads, boundaries, transmission lines, major buildings, etc. Relief is shown with standard contour intervals of 5 feet. Depths shown by isolines and soundings. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.