11 resultados para Chemoselectivity


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reduction of the natural sesquiterpene lactones furanoheliangolides with Stryker's reagent is an effective process for producing eremantholides through a biomimetic pathway. Other reduction products are also formed. Oxygenated functions at C-15 of the furanoheliangolide produce an increase in the velocities of the reactions and reduce the chemoselectivity of the reagent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L’importance des produits naturels dans le développement de nouveaux médicaments est indéniable. Malheureusement, l’isolation et la purification de ces produits de leurs sources naturelles procure normalement de très faibles quantités de molécules biologiquement actives. Ce problème a grandement limité l’accès à des études biologiques approfondies et/ou à une distribution sur une grande échelle du composé actif. Par exemple, la famille des pipéridines contient plusieurs composés bioactifs isolés de sources naturelles en très faible quantité (de l’ordre du milligramme). Pour pallier à ce problème, nous avons développé trois nouvelles approches synthétiques divergentes vers des pipéridines polysubstituées contenant une séquence d’activation/désaromatisation d’un sel de pyridinium chiral et énantioenrichi. La première approche vise la synthèse de pipéridines 2,5-disubstituées par l’utilisation d’une réaction d’arylation intermoléculaire sur des 1,2,3,4-tétrahydropyridines 2-substituées. Nous avons ensuite développé une méthode de synthèse d’indolizidines et de quinolizidines par l’utilisation d’amides secondaires. Cette deuxième approche permet ainsi la synthèse formelle d’alcaloïdes non-naturels à la suite d’une addition/cyclisation diastéréosélective et régiosélective sur un intermédiaire pyridinium commun. Finalement, nous avons développé une nouvelle approche pour la synthèse de pipéridines 2,6-disubstituées par l’utilisation d’une réaction de lithiation dirigée suivie d’un couplage croisé de Negishi ou d’un parachèvement avec un réactif électrophile. Le développement de transformations chimiosélectives et versatiles est un enjeu crucial et actuel pour les chimistes organiciens. Nous avons émis l’hypothèse qu’il serait possible d’appliquer le concept de chimiosélectivité à la fonctionnalisation d’amides, un des groupements le plus souvent rencontrés dans la structure des molécules naturelles. Dans le cadre précis de cette thèse, des transformations chimiosélectives ont été réalisées sur des amides secondaires fonctionnalisés. La méthode repose sur l’activation de la fonction carbonyle par l’anhydride triflique en présence d’une base faible. Dans un premier temps, l’amide ainsi activé a été réduit sélectivement en fonction imine, aldéhyde ou amine en présence d’hydrures peu nucléophiles. Alternativement, un nucléophile carboné a été employé afin de permettre la synthèse de cétones ou des cétimines. D’autre part, en combinant un amide et un dérivé de pyridine, une réaction de cyclisation/déshydratation permet d’obtenir les d’imidazo[1,5-a]pyridines polysubstituées. De plus, nous avons brièvement appliqué ces conditions d’activation au réarrangement interrompu de type Beckmann sur des cétoximes. Une nouvelle voie synthétique pour la synthèse d’iodures d’alcyne a finalement été développée en utilisant une réaction d’homologation/élimination en un seul pot à partir de bromures benzyliques et allyliques commercialement disponibles. La présente méthode se distincte des autres méthodes disponibles dans la littérature par la simplicité des procédures réactionnelles qui ont été optimisées afin d’être applicable sur grande échelle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The adsorption and hydrogenation of acrolein on the Ag(111) surface has been investigated by high resolution synchrotron XPS, NEXAFS, and temperature programmed reaction. The molecule adsorbs intact at all coverages and its adsorption geometry is critically important in determining chemoselectivity toward the formation of allyl alcohol, the desired but thermodynamically disfavored product. In the absence of hydrogen adatoms (H(a)), acrolein lies almost parallel to the metal surface; high coverages force the C=C bond to tilt markedly, likely rendering it less vulnerable toward reaction with hydrogen adatoms. Reaction with coadsorbed H(a) yields allyl alcohol, propionaldehyde, and propanol, consistent with the behavior of practical dispersed Ag catalysts operated at atmospheric pressure: formation of all three hydrogenation products is surface reaction rate limited. Overall chemoselectivity is strongly influenced by secondary reactions of allyl alcohol. At low H(a) coverages, the C=C bond in the newly formed allyl alcohol molecule is strongly tilted with respect to the surface, rendering it immune to attack by H(a) and leading to desorption of the unsaturated alcohol. In contrast with this, at high H(a) coverages, the C=C bond in allyl alcohol lies almost parallel to the surface, undergoes hydrogenation by H(a), and the saturated alcohol (propanol) desorbs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The applicability of Baeyer-Villiger monooxygenases (BVMOs) in organoboron chemistry has been explored through testing chemo-and enantioselective oxidations of a variety of boron-containing aromatic and vinylic compounds. Several BVMOs, namely: phenylacetone monooxygenase (PAMO), M446G PAMO mutant, 4-hydroxyacetophenone monooxygenase (HAPMO) and cyclohexanone monooxygenase (CHMO) were used in this study. The degree of chemoselectivity depends on the type of BVMO employed, in which the biocatalysts prefer boron-carbon oxidation over Baeyer-Villiger oxidation or epoxidation. Interestingly, it was discovered that PAMO can be used to perform kinetic resolution of boron-containing compounds with good enantioselectivities. These findings extend the known biocatalytic repertoire of BVMOs by showing a new family of compounds that can be oxidized by these enzymes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of whole cells of micro-organisms to bring about the biotransformation of an organic compound offers a number of advantages, but problems caused by enzymatic Promiscuity may be encountered upon With Substrates hearing more than one functional group. A one-pot screening method, in which whole fungal cells were incubated with a Mixture of 4-rnethylcyclohexanone I and phenyl methyl Sulfide 2, has been employed to determine the chemoselectivity of various biocatalysts. The hyphomycetes, Aspergillus terreus CCT 3320 and A. terreus URM 3571, catalysed the oxidation of 2 accompanied by the reduction of I to 4-methylcyclohexanol 1a and, for strain A. terreus CCT 3320, the Baeyer-Villiger oxidation of 1. The Basidomycetes, Trametes versicolor CCB 202, Pycnoporus sanguineus CCB 501 and Trichaptum byssogenum CCB 203, catalysed the oxidation of 2 and the reduction 1, but no Baeyer-Villiger reaction products were detected. In contrast. Trametes rigida CCB 285 catalysed the biotransformation of 1 to 1a, exclusively, in the absence of any detectable Sulfide oxidation reactions. The chemoselective reduction Of (+/-)-2-(phenylthio)cyclohexanone 3 by T. rigida CCB 285 afforded exclusively the (+)-cis-(1R,2S) and (+)-trans-(1S,2S) diastereoisomers of 2-(phenylthio)cyclohexan-1-ol 3a in moderate yields (13% and 27%, respectively) and high enantiomeric excesses (>98%). Chemoselective screening for the reduction of a ketone and/or the oxidation Of a Sulfide group in one pot by whole cells of micro-organisms represents an attractive technique with applications in the development of synthesis of complex molecule hearing different functional groups. (C) 2008 Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present Thesis studies three alternative solvent groups as sustainable replacement of traditional organic solvents. Some aspects of fluorinated solvents, supercritical fluids and ionic liquids, have been analysed with a critical approach and their effective “greenness” has been evaluated from the points of view of the synthesis, the properties and the applications. In particular, the attention has been put on the environmental and human health issues, evaluating the eco-toxicity, the toxicity and the persistence, to underline that applicability and sustainability are subjects with equal importance. The “green” features of fluorous solvents and supercritical fluids are almost well-established; in particular supercritical carbon dioxide (scCO2) is probably the “greenest” solvent among the alternative solvent systems developed in the last years, enabling to combine numerous advantages both from the point of view of industrial/technological applications and eco-compatibility. In the Thesis the analysis of these two classes of alternative solvents has been mainly focused on their applicability, rather than the evaluation of their environmental impact. Specifically they have been evaluated as alternative media for non-aqueous biocatalysis. For this purpose, the hydrophobic ion pairing (HIP), which allows solubilising enzymes in apolar solvents by an ion pairing between the protein and a surfactant, has been investigated as effective enzymatic derivatisation technique to improve the catalytic activity under homogeneous conditions in non conventional media. The results showed that the complex enzyme-surfactant was much more active both in fluorous solvents and in supercritical carbon dioxide than the native form of the enzyme. Ionic liquids, especially imidazolium salts, have been proposed some years ago as “fully green” alternative solvents; however this epithet does not take into account several “brown” aspects such as their synthesis from petro-chemical starting materials, their considerable eco-toxicity, toxicity and resistance to biodegradation, and the difficulty of clearly outline applications in which ionic liquids are really more advantageous than traditional solvents. For all of these reasons in this Thesis a critical analysis of ionic liquids has been focused on three main topics: i) alternative synthesis by introducing structural moieties which could reduce the toxicity of the most known liquid salts, and by using starting materials from renewable resources; ii) on the evaluation of their environmental impact through eco-toxicological tests (Daphnia magna and Vibrio fischeri acute toxicity tests, and algal growth inhibition), toxicity tests (MTT test, AChE inhibition and LDH release tests) and fate and rate of aerobic biodegradation in soil and water; iii) and on the demonstration of their effectiveness as reaction media in organo-catalysis and as extractive solvents in the recovery of vegetable oil from terrestrial and aquatic biomass. The results about eco-toxicity tests with Daphnia magna, Vibrio fischeri and algae, and toxicity assay using cultured cell lines, clearly indicate that the difference in toxicity between alkyl and oxygenated cations relies in differences of polarity, according to the general trend of decreasing toxicity by decreasing the lipophilicity. Independently by the biological approach in fact, all the results are in agreement, showing a lower toxicity for compounds with oxygenated lateral chains than for those having purely alkyl lateral chains. These findings indicate that an appropriate choice of cation and anion structures is important not only to design the IL with improved and suitable chemico-physical properties but also to obtain safer and eco-friendly ILs. Moreover there is a clear indication that the composition of the abiotic environment has to be taken into account when the toxicity of ILs in various biological test systems is analysed, because, for example, the data reported in the Thesis indicate a significant influence of salinity variations on algal toxicity. Aerobic biodegradation of four imidazolium ionic liquids, two alkylated and two oxygenated, in soil was evaluated for the first time. Alkyl ionic liquids were shown to be biodegradable over the 6 months test period, and in contrast no significant mineralisation was observed with oxygenated derivatives. A different result was observed in the aerobic biodegradation of alkylated and oxygenated pyridinium ionic liquids in water because all the ionic liquids were almost completely degraded after 10 days, independently by the number of oxygen in the lateral chain of the cation. The synthesis of new ionic liquids by using renewable feedstock as starting materials, has been developed through the synthesis of furan-based ion pairs from furfural. The new ammonium salts were synthesised in very good yields, good purity of the products and wide versatility, combining low melting points with high decomposition temperatures and reduced viscosities. Regarding the possible applications as surfactants and biocides, furan-based salts could be a valuable alternative to benzyltributylammonium salts and benzalkonium chloride that are produced from non-renewable resources. A new procedure for the allylation of ketones and aldehydes with tetraallyltin in ionic liquids was developed. The reaction afforded high yields both in sulfonate-containing ILs and in ILs without sulfonate upon addition of a small amount of sulfonic acid. The checked reaction resulted in peculiar chemoselectivity favouring aliphatic substrates towards aromatic ketones and good stereoselectivity in the allylation of levoglucosenone. Finally ILs-based systems could be easily and successfully recycled, making the described procedure environmentally benign. The potential role of switchable polarity solvents as a green technology for the extraction of vegetable oil from terrestrial and aquatic biomass has been investigated. The extraction efficiency of terrestrial biomass rich in triacylglycerols, as soy bean flakes and sunflower seeds, was comparable to those of traditional organic solvents, being the yield of vegetable oils recovery very similar. Switchable polarity solvents as been also exploited for the first time in the extraction of hydrocarbons from the microalga Botryococcus braunii, demonstrating the efficiency of the process for the extraction of both dried microalgal biomass and directly of the aqueous growth medium. The switchable polarity solvents exhibited better extraction efficiency than conventional solvents, both with dried and liquid samples. This is an important issue considering that the harvest and the dewatering of algal biomass have a large impact on overall costs and energy balance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Treatment of N-tritylated tetrazoles bearing aliphatic, aromatic, or heteroaromatic substituents (including functionalized ones) with lithium powder and a catalytic amount of naphthalene led to reductive removal of the trityl group to give excellent yields of the corresponding free tetrazoles without decomposition of the tetrazole ring. The detritylation process was successfully extended to several tetrazoles that are components of sartans, an interesting class of drugs. The chemoselectivity between trityl–tetrazole and trityl­–amine bond-cleavage reactions was also studied. This method represents an efficient technique for deprotection of tritylated tetrazoles under non-acidic conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemoselectivity is a cornerstone of catalysis, permitting the targeted modification of specific functional groups within complex starting materials. Here we elucidate key structural and electronic factors controlling the liquid phase hydrogenation of cinnamaldehyde and related benzylic aldehydes over Pt nanoparticles. Mechanistic insight from kinetic mapping reveals cinnamaldehyde hydrogenation is structure-insensitive over metallic platinum, proceeding with a common Turnover Frequency independent of precursor, particle size or support architecture. In contrast, selectivity to the desired cinnamyl alcohol product is highly structure sensitive, with large nanoparticles and high hydrogen pressures favoring C=O over C=C hydrogenation, attributed to molecular surface crowding and suppression of sterically-demanding adsorption modes. In situ vibrational spectroscopies highlight the role of support polarity in enhancing C=O hydrogenation (through cinnamaldehyde reorientation), a general phenomenon extending to alkyl-substituted benzaldehydes. Tuning nanoparticle size and support polarity affords a flexible means to control the chemoselective hydrogenation of aromatic aldehydes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The gold(I)-catalyzed chemoselective dearomatization of β-naphthols is reported through a straightforward approach via [3,3]-sigmatropic rearrangement /allene-cyclyzation cascade processes. Easily accessed naphthyl-propargyl ethers and derivatives in this work are employed as starting materials. Delightfully, an array of deoramatized dyhydrofuryl -naphthalen-2(1H)-ones featured densely functional groups are obtained in high yields (up to 98%) in 10 min reaction time under extremely mild reaction conditions like reagent grade solvent and exposure to air. The potential of accessing to high enantioselectivety on the dearomatized dyhydrofuryl- naphthalen-2(1H)-ones is also approved by the good ee (65%) relying on (R)-xylyl- BINAP(AuCl)2. In addition, complete theoretical elucidation of the reaction pathway is also proposed which addresses a rationale for essential motivation such as regio- and chemoselectivity. Moreover, an efficient gold catalyzed intermolecular dearomatization of substituted β-naphthols with allenamides is presented here. PPh3AuTFA (5 mol %) approves the efficient dearomatively allylation protocol under mild conditions and exhibits high tolerance on substrates scope (24 examples) in good to excellent yield accompanied with high regioselectivity and stereoselectivity. Moreover, the synergistic catalytic system also highlight the synergistic function between the [PPh3Au]+ (π-acid) and TFA− (Lewis base). At last, a new chiral BINOL phosphoric acid silver salt is successfully synthesized and used as the chiral counter anion, which strongly promotes the enantioselectivity (up to 92%). At last but not least, crucially, SmI2 induced enantioselective formal synthesis of strychnine, a complex alkaloid and a classical target used to benchmark new synthetic methods is developed. Enantioselective dearomatising radical cyclisation on to the indole unit and further ET will then give organosamarium that is quenched diastereoselectively by the ester to deliver Strychnine in 7 steps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Levulinic acid (LA) is a polyfunctional molecule obtained from biomass. Because of its structure, the United States Department of energy classified LA as one of the top 12 building block chemicals. Typically, it is valorized through chemical reduction to γ-valerolactone (GVL). It is usually done with H2 in batch systems with high H2 pressures and noble metal catalysts, making it expensive and less applicable. Therefore, alternative approaches such as catalytic transfer hydrogenation (CTH) through the Meerwein–Ponndorf–Verley (MPV) reaction over heterogeneous catalysts have been studied. This uses organic molecules (alcohols) which act as a hydride transfer agent (H-donor), to reduce molecules containing carbonyl groups. Given the stability of the intermediate, reports have shown the batch liquid-phase CTH of levulinate esters with secondary alcohols, and remarkable results (GVL yield) have been obtained over ZrO2, given the need of a Lewis acid (LASites) and base pair for CTH. However, there were no reports of the continuous gas-phase CTH of levulinate esters. Therefore, high surface area ZrO2 was tested for gas-phase CTH of methyl levulinate (ML) using ethanol, methanol and isopropanol as H-donors. Under optimized conditions with ethanol (250 ℃), the reaction is selective towards GVL (yield 70%). However, heavy carbonaceous materials over the catalyst surface progressively blocked LASites changing the chemoselectivity. The in situ regeneration of the catalyst permitted a partial recovery of the LASites and an almost total recovery of the initial catalytic behavior, proving the deactivation reversible. Tests with methanol were not promising (ML conversion 35%, GVL yield 4%). As expected, using isopropanol provided complete conversion and a GVL yield of 80%. The reaction was also tested using bioethanol derived from agricultural waste. In addition, a preliminary study was performed for the hydrogenolysis of polyols to produce bioethanol, were Pd-Fe catalyst promoted the ethanol selective (37%) hydrogenolysis of glycerol.