977 resultados para Chemical Engineering(all)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Factors that control the competition between toluene dioxgenase-catalysed arene cis-dihydroxylation and dehydrogenase-catalysed ketone reduction have been studied, using whole cells of Pseudomonas putida UV and three alkylaryl ketones. The triol metabolite, obtained from 2,2,2-trifluoroacetophenone, has been used in the synthesis of single enantiomer chiral phenols and benzylic alcohols. Potential applications of the methylether derivatives of the chiral phenols and benzylic alcohols, as resolving agents, have been found. (c) 2007 Society of Chemical Industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oxidation of hydrogen was studied at an activated platinum micro-electrode by cyclic voltammetry in the following ionic liquids: [C(2)mim][NTf2], [C(4)mim][NTf2], [N-6.2.2.2][NTf2], [P-14.6.6.6][NTf2], [C(4)mim][OTf], [C(4)mim][BF4] [C(4)mim][PF6], [C(4)mim][NO3], [C(6)mim]Cl and [C(6)mim][FAP] (where [C(n)mim](+) = 1-alkyl-3-methylimidazolium, [N-6,N-2,N-2,N-2](+) = n-hexyltriethylammonium, [P-14,P-6,P-6,P-6](+) = tris(n-hexyltetradecyl) phosphonium, [NTf2](-) = bis(trifluoromethylsulfonyl)amide, [OTf] = trifluoromethlysulfonate and [FAP](-) = tris(perfluoroethyl)trifluorophosphate). Activation of the Pt electrode was necessary to obtain reliable and reproducible voltammetry. After activation of the electrode, the H-2 oxidation waves were nearly electrochemically and chemically reversible in [C(n)mim][NTf2] ionic liquids, chemically irreversible in [C(6)mim]Cl and [C(4)mim][NO3], and showed intermediate characteristics in OTf-, [BF4](-), [PF6](-), [FAP](-) and other [NTf2](-)-based ionic liquids. These differences reflect the contrasting interactions of protons with the respective RTIL anions. The oxidation peaks are reported relative to the half-wave potential of the cobaltocenium/cobaltocene redox couple in all ionic liquids studied, giving an indication of the relative proton interactions of each ionic liquid. A preliminary temperature study (ca. 298-333 K) has also been carried out in some of the ionic liquids. Diffusion coefficients and solubilities of hydrogen at 298 K were obtained from potential-step chronoamperometry, and there was no relationship found between the diffusion coefficients and solvent viscosity. RTILs possessing [NTf2](-) and [FAP](-) anions showed the highest micro-electrode peak currents for the oxidation in H-2 saturated solutions, with[C(4)mim][NTf2] toeing the most sensitive. The large number of available RTIL anion/cation pairs allows scope for the possible electrochemical detection of hydrogen gas for use in gas sensor technology. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The prediction of molar volumes and densities of several ionic liquids has been achieved using a group contribution model as a function of temperature between (273 and 423) K at atmospheric pressure. It was observed that the calculation of molar volumes or densities could be performed using the "ideal" behavior of the molar volumes of mixtures of ionic liquids. This model is based on the observations of Canongia Lopes et al. (J. Phys. Chem. B 2005, 109, 3519-3525) which showed that this ideal behavior is independent of the temperature and allows the molar volume of a given ionic liquid to be calculated by the sum of the effective molar volume of the component ions. Using this assumption, the effective molar volumes of ions constituting more than 220 different ionic liquids were calculated as a function of the temperature at 0.1 MPa using more than 2150 data points. These calculated results were used to build up a group contribution model for the calculation of ionic liquid molar volumes and densities with an estimated repeatability and uncertainty of 0.36% and 0.48%, respectively. The impact of impurities (water and halide content) in ionic liquids as well as the method of determination were also analyzed and quantified to estimate the overall uncertainty. © 2008 American Chemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reductions of nitrobenzene and 4-nitrophenol were studied by cyclic voltammetry in the room temperature ionic liquid 1-butyl2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide [C(4)dmim][N(Tf)(2)] on a gold microelectrode. Nitrobenzene was reduced reversibly by one electron and further by two electrons in a chemically irreversible step. The more complicated reduction of 4-nitrophenol revealed three reductive peaks (two irreversible and one reversible) which were successfully simulated using the digital simulation program DigiSim((R)) using a mechanism of rapid self-protonation, given below.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemistry of phenol and 4-tert-butyl-phenol is described in [C(2)mim][NTf2] and [C(4)mpyrr][NTf2] ionic liquids. Oxidation of phenol and phenolate is observed at E-p(a) = +1.64 and +0.24 V vs. Ag in both ionic liquids. On the cathodic sweep at a potential of -2.05 P 02 V vs. Ag under an oxygen atmosphere, the production of O-2(2-) dianions triggers the formation of phenolate anions which undergo chemical oxidation to the phenoxyl radical. The phenoxyl radical then reacts with the [NTf2](-) anion of the ionic liquid to form the corresponding phenyl triflate molecule. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oxidation of bromide has been investigated by linear sweep and cyclic voltammetry at platinum electrodes in the room temperature ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide, ([C(4)mim][NTf2]), and the conventional aprotic solvent. acetonitrile, (MeCN). Similar voltammetry was observed in both solvents, despite their viscosities differing by more than an order of magnitude. DigiSim(R) was employed to simulate the voltammetric response. The mechanism is believed to involve the direct oxidation of bromide to bromine in a heterogeneous step, followed by a homogenous reaction to form the tribromide anion: 2Br(-) --> Br-2 + 2e(-)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An efficient approach to the simulation of the double potential step chronoamperometry at a microdisk electrode based on an exponentially expanding time grid and conformal mapping of the space is presented. The dimensionless second potential step flux data are included as a function of the first potential step duration and the ratio of the diffusion coefficients of the reacting species allowing instant analysis of the experimental double potential step chronoamperograms without a need for simulation. The values of the diffusion coefficients are determined for several test systems and found to be in good agreement with existing literature data. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The five room temperature ionic liquids: 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([CnMIM][N(Tf)(2)], n = 2, 4, 8, 10) and n-hexyltriethylammonium bis(trifluoromethylsulfonyl)imide ([N-6222][N(Tf)(2)]) were investigated as solvents in which to study the electrochemical oxidation of N,N,N',N'-tetramethyl-para-phenylenediamine (TMPD) and N,N,N',N'-tetrabutyl-paraphenylenediamine (TBPD), using 20 mul micro-samples under vacuum conditions. The effect of dissolved atmospheric gases on the accessible electrochemical window was probed and determined to be less significant than seen previously for ionic liquids containing alternative anions. Chronoamperometric transients recorded at a microdisk electrode were analysed via a process of non-linear curve fitting to yield values for the diffusion coefficients of the electroactive species without requiring a knowledge of their initial concentration. Comparison of experimental and simulated cyclic voltammetry was then employed to corroborate these results and allow diffusion coefficients for the electrogenerated species to be estimated. The diffusion coefficients obtained for the neutral compounds in the five ionic liquids via this analysis were, in units of 10(-11) m(2) s(-1), 2.62, 1.87, 1.12, 1.13 and 0.70 for TMPD. and 1.23, 0.80, 0.40, 0.52 and 0.24 for TBPD (listed using the same order for the ionic liquids as stated above). The most significant consequence of changing the cationic component of the ionic liquid was found to be its effect on the solvent viscosity; the diffusion coefficient of each species was found to be approximately inversely proportional to viscosity across the series of ionic liquids, in accordance with Walden's rule. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dilute acid hydrolysis of grass and cellulose with phosphoric acid was undertaken in a microwave reactor system. The experimental data and reaction kinetic analysis indicate that this is a potential process for cellulose and hemi-cellulose hydrolysis, due to a rapid hydrolysis reaction at moderate temperatures. The optimum conditions for grass hydrolysis were found to be 2.5% phosphoric acid at a temperature of 175 degrees C. It was found that sugar degradation occurred at acid concentrations greater than 2.5% (v/v) and temperatures greater than 175 degrees C. In a further series of experiments, the kinetics of dilute acid hydrolysis of cellulose was investigated varying phosphoric acid concentration and reaction temperatures. The experimental data indicate that the use of microwave technology can successfully facilitate dilute acid hydrolysis of cellulose allowing high yields of glucose in short reaction times. The optimum conditions gave a yield of 90% glucose. A pseudo-homogeneous consecutive first order reaction was assumed and the reaction rate constants were calculated as: k(1) = 0.0813 s(-1); k(2) = 0.0075 s(-1), which compare favourably with reaction rate constants found in conventional non-microwave reaction systems. The kinetic analysis would indicate that the primary advantages of employing microwave heating were to: achieve a high rate constant at moderate temperatures: and to prevent 'hot spot' formation within the reactor, which would have cause localised degradation of glucose.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of dye molecular charges on their adsorption from solution was investigated by using different types of activated carbon adsorbents. Two types of model systems were used representing cationic and anionic dyes. Screening investigations using single point tests were used throughout the study. Cationic dyes, of which Methylene Blue is an example, showed a higher adsorption tendency towards activated carbon over anionic dyes represented by an ate-type reactive compound. Of the number of activated carbons tested, only one of the adsorbents showed an exception to this behavior, and a good relation was observed between Methylene Blue capacity and activated carbon performance. The high capacity of cationic dyes in comparison to anionic dyes was also evident in the results obtained by a preliminary kinetic study carried out on the selected systems. Surface net charge of activated carbon and the nature of attractions between the molecules were suggested to be one of the reasons attributed for this behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chitins produced via a conventional chemical route as well as from a new biological process were modified to increase the efficiency of enzymatic deacetylation reactions for the production of novel biological chitosan. These modified chitins were reacted for 24h with extracellular fungal enzymes from Colletotrichum lindemuthianum. The chemical and physical properties of the various substrates were analysed and their properties related to the effectiveness in the deacetylation reaction. Modifications of the chitins affected the degree of deacetylation with varied effects. Without further modification to reduce crystallinity and to open up the solid substrate structure, the chitins were found to be poor substrates for the heterogeneous solid-liquid enzymatic catalysis. It was found that the solvent and drying method used in modifying the chitins had significant impact on the final efficiency of the enzymatic deacetylation reaction. The most successful modifications through freeze drying of a colloidal chitin suspension increased the degree of enzymatic deacetylation by 20 fold. These processes reduce the crystallinity of the chitin making it easier for the enzymes to access their internal structure. X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, and BET isotherm analysis are employed to characterise the modified chitins to ascertain the degree of crystallinity, porous structure, surface area, and morphology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cysteine protease cathepsin S (CatS) is involved in the pathogenesis of autoimmune disorders, atherosclerosis, and obesity. Therefore, it represents a promising pharmacological target for drug development. We generated ligand-based and structure-based pharmacophore models for noncovalent and covalent CatS inhibitors to perform virtual high-throughput screening of chemical databases in order to discover novel scaffolds for CatS inhibitors. An in vitro evaluation of the resulting 15 structures revealed seven CatS inhibitors with kinetic constants in the low micromolar range. These compounds can be subjected to further chemical modifications to obtain drugs for the treatment of autoimmune disorders and atherosclerosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heat capacities of nine ionic liquids were measured from (293 to 358) K by using a heat flux differential scanning calorimeter. The impact of impurities (water and chloride content) in the ionic liquid was analyzed to estimate the overall uncertainty. The Joback method for predicting ideal gas heat capacities has been extended to ionic liquids by the generation of contribution parameters for three new groups. The principle of corresponding states has been employed to enable the subsequent calculation of liquid heat capacities for ionic liquids, based on critical properties predicted using the modified Lydersen-Joback-Reid method, as a function of the temperature from (256 to 470) K. A relative absolute deviation of 2.9% was observed when testing the model against 961 data points from 53 different ionic liquids reported previously and measured within this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ZSM-5 zeolite in H+ form with an average pore size of 1.2 nm was used for aqueous phase dehydration of xylose to furfural at low temperatures;, that is, from 413 to 493 K. The selectivity in furfural increased with the temperature to a value of 473 K. Beyond this temperature, condensation reactions were significant and facilitated by the intrinsic structure of ZSM-5. A reaction mechanism that included isomerization of xylose to lyxose, dehydration of lyxose and xylose to furfural, fragmentation of furfural to organic acids, oligomerization of furfural to bi- and tridimensional furilic species, and complete dehydration of organic acids to carbonaceous deposits was developed, and the associated kinetic parameters were estimated. The rate of furfural production was found to be more sensitive to temperature than the rates of side reactions, with an estimated activation energy of 32.1 kcal/mol. This value correlated well with data in the literature obtained by homogeneous catalytic dehydration.