130 resultados para Chelonia Mydas


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patterns of mitochondrial DNA (mtDNA) variation were used to analyse the population genetic structure of southwestern Indian Ocean green turtle (Chelonia mydas) populations. Analysis of sequence variation over 396 bp of the mtDNA control region revealed seven haplotypes among 288 individuals from 10 nesting sites in the Southwest Indian Ocean. This is the first time that Atlantic Ocean haplotypes have been recorded among any Indo-Pacific nesting populations. Previous studies indicated that the Cape of Good Hope was a major biogeographical barrier between the Atlantic and Indian Oceans because evidence for gene flow in the last 1.5 million years has yet to emerge. This study, by sampling localities adjacent to this barrier, demonstrates that recent gene flow has occurred from the Atlantic Ocean into the Indian Ocean via the Cape of Good Hope. We also found compelling genetic evidence that green turtles nesting at the rookeries of the South Mozambique Channel (SMC) and those nesting in the North Mozambique Channel (NMC) belong to separate genetic stocks. Furthermore, the SMC could be subdivided in two different genetic stocks, one in Europa and the other one in Juan de Nova. We suggest that this particular genetic pattern along the Mozambique Channel is attributable to a recent colonization from the Atlantic Ocean and is maintained by oceanic conditions in the northern and southern Mozambique Channel that influence early stages in the green turtle life cycle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ecological and genetic studies of marine turtles generally support the hypothesis of natal homing, but leave open the question of the geographical scale of genetic exchange and the capacity of turtles to shift breeding sites. Here we combine analyses of mitochondrial DNA (mtDNA) variation and recapture data to assess the geographical scale of individual breeding populations and the distribution of such populations through Australasia. We conducted multiscale assessments of mtDNA variation among 714 samples from 27 green turtle rookeries and of adult female dispersal among nesting sites in eastern Australia. Many of these rookeries are on shelves that were flooded by rising sea levels less than 10 000 years (c. 450 generations) ago. Analyses of sequence variation among the mtDNA control region revealed 25 haplotypes, and their frequency distributions indicated 17 genetically distinct breeding stocks (Management Units) consisting either of individual rookeries or groups of rookeries in general that are separated by more than 500 km. The population structure inferred from mtDNA was consistent with the scale of movements observed in long-term mark-recapture studies of east Australian rookeries. Phylogenetic analysis of the haplotypes revealed five clades with significant partitioning of sequence diversity (Φ = 68.4) between Pacific Ocean and Southeast Asian/Indian Ocean rookeries. Isolation by distance was indicated for rookeries separated by up to 2000 km but explained only 12% of the genetic structure. The emerging general picture is one of dynamic population structure influenced by the capacity of females to relocate among proximal breeding sites, although this may be conditional on large population sizes as existed historically across this region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coastal seagrass habitats in tropical and subtropical regions support aggregations of resident green turtles (Chelonia mydas) from several genetically distinct breeding populations. Migration of individuals to their respective dispersed breeding sites provides a complex pattern of migratory connectivity among nesting and feeding habitats of this species. An understanding of this pattern is important in regions where the persistence of populations is under threat from anthropogenic impacts. The present study uses mitochondrial DNA and mixed-stock analyses to assess the connectivity among seven feeding grounds across the north Australian coast and adjacent areas and 17 genetically distinct breeding populations from the Indo-Pacific region. It was hypothesised that large and geographically proximate breeding populations would dominate at nearby feeding grounds. As expected, each sampled feeding area appears to support multiple breeding populations, with two aggregations dominated by a local breeding population. Geographic distance between breeding and feeding habitat strongly influenced whether a breeding population contributed to a feeding ground (wi = 0.654); however, neither distance nor size of a breeding population was a good predictor of the extent of their contribution. The differential proportional contributions suggest the impact of anthropogenic mortality at feeding grounds should be assessed on a case-by-case basis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Assessing the status of widely distributed marine species can prove difficult because virtually every sampling technique has assumptions, limitations, and biases that affect the results of the study. These biases often are overlooked when the biological and nonbiological implications of the results are discussed. In a recent review, Thompson (1988) used mostly unpublished population census data derived from studies conducted by the National Marine Fisheries Service (NMFS) to draw conclusions about the status of Kemp's ridley, Lepidochelys kempi; Atlantic coast green turtles, Chelonia mydas; and the loggerhead sea turtle, Caretta caretta.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Skeletochronological data on growth changes in humerus diameter were used to estimate the age of Hawaiian green seaturtles ranging from 28.7 to 96.0 cm straight carapace length. Two age estimation methods, correction factor and spline integration, were compared, giving age estimates ranging from 4.1 to 34.6 and from 3.3 to 49.4 yr, respectively, for the sample data. Mean growth rates of Hawaiian green seaturtles are 4–5 cm/yr in early juveniles, decline to a relatively constant rate of about 2 cm/yr by age 10 yr, then decline again to less than 1 cm/yr as turtles near age 30 yr. On average, age estimates from the two techniques differed by just a few years for juvenile turtles, but by wider margins for mature turtles. The spline-integration method models the curvilinear relationship between humerus diameter and the width of periosteal growth increments within the humerus, and offers several advantages over the correction-factor approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Temperature loggers were attached to the carapace of green turtles (Chelonia mydas) at Ascension Island and Cyprus and to loggerhead turtles (Caretta caretta) at Cyprus, in order to record the ambient temperature experienced by individuals during the internesting interval, i.e. the period between consecutive clutches being laid. Internesting intervals were relatively short (10-14 days) and mean ambient temperatures relatively warm (27-28degreesC), compared to previous observations for these species nesting in Japan, although a single internesting interval versus temperature relationship described all the data for these two species from the different areas. The implication is that water temperature has both a common and a profound effect on the length of the internesting interval for these two species: internesting intervals are shorter when the water is warmer. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mest., Biologia Marinha (Ecologia e Conservação Marinha), Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2012

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We used time-depth recorders to measure depth utilisation in gravid green turtles (Chelonia mydas) during the internesting period at northern Cyprus (Mediterranean), a nesting area where individuals feed, and at Ascension Island (mid-Atlantic), a nesting area where individuals fast. There were contrasting patterns of depth utilisation between the two sites, illustrating that the behaviour of this species is shaped by local conditions. For example, the amount of time spent shallower than 4 m was 90% at Cyprus but only 31% at Ascension Island, and there was a clear difference between the mean depth at Cyprus (2.7 m, n=9 internesting intervals) versus Ascension Island (9.5 m, n=6 internesting intervals) (t 5=5.92, P=0.002). At Cyprus, turtles spent the greatest percentage of their time at very shallow depths, where surveys reveated a high abundance of seagrass on which this population feeds. In contrast, the deeper distribution at Ascension Island may reflect the preferred depth for resting on the seabed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Female green sea turtles (Chelonia mydas) nesting at Ascension Island (7°57'S, 14°22'W) in the middle of the Atlantic Ocean had a mean body mass (post oviposition) of 166.3 kg (range 107.5–243.5 kg, n = 119). Individuals lost mass slowly during the nesting season (mean mass loss 0.22 kg·d–1, n = 14 individuals weighed more than once). Gut-content analysis and behavioural observations indicated a lack of feeding. Females of equivalent-sized pinniped species that also do not feed while reproducing (nursing pups) on islands lose mass about 17 times faster. This comparatively low rate of mass loss by green turtles probably reflects their ectothermic nature and, consequently, their low metabolic rate. We estimate that a female turtle would lose only 19% of her body mass during the 143-day, 4400-km round trip from Brazil if she did not eat, laid 3 clutches of eggs, and lost 0.22 kg·d–.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Like many animals migrating through the oceans, sea turtles face difficult navigational tasks when they have to reach distant, specific sites. The paradigmatic case of Brazilian green turtles (Chelonia mydas), which nest on the tiny Ascension Island in the middle of the Atlantic Ocean, has often been the subject of hypotheses concerning their navigational mechanisms. To investigate their nature, we displaced 18 females from Ascension and tracked them by satellite after release from eight different points in the ocean, 60–450 km away from the island. Four turtles moved to Brazil soon after the release, 4 moved in various directions before heading to Brazil, and 10 reached the island. All the successful trips, bar 1, were winding but ended with a final straight segment of variable length, as if the turtles were searching for a sensory contact with the island which they obtained at various distances. The approach to Ascension mostly occurred from the direction opposite to the trade wind, suggesting a navigational role of wind-borne information originating from the island.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The depth and swim speed of a green turtle (Chelonia mydas) were measured during the internesting period in Cyprus. For dives to the seabed (U-dives) we used these data to determine dive angles. Typically the turtle initially descended at a steep angle ([similar]60°) but as the dive continued this angle lessened until the turtle approached the seabed at an average angle of [similar]15°. This systematic change in descent angle is consistent with the prediction that the energetic implications of dive angle are most important at the start of the dive when the turtle is fighting to overcome its positive buoyancy. On leaving the seabed, the turtle often seemed to rise passively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a turtle-borne camera system, changing flipper beat frequency and amplitude were measured in five diving green turtles (Chelonia mydas Linnaeus 1758) in the Bahía de los Angeles, Mexico (28°58′N, 113°33′W). These observations were made between June and August 2002. Turtles worked hardest (i.e., had the highest flipper beat frequency and amplitude) at the start of descents when positive buoyancy is predicted to oppose their forward motion. During the later part of descents, turtles worked less hard in line with opposing buoyancy forces being reduced. For example, flipper beat frequency declined from about 60–80 beats min−1 at the start of descent to around 25–40 beats min−1 after 30 s of the descent. At the start of ascents the flipper beat frequency was around 30 beats min−1, lower than on descent, and declined as the ascent progressed with often passive gliding for the final few meters to the surface. This pattern of effort during diving appears to apply across a range of marine reptiles, birds and mammals suggesting that graded effort during descent and ascent is an optimum solution to minimising the cost of transport during diving.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The emergence patterns of both green (Chelonia mydas) and loggerhead (Caretta caretta) turtle hatchlings were observed in great detail over three seasons at Alagadi beach, northern Cyprus. In total, 38 green turtle and 50 loggerhead turtle nests were monitored, accounting for the emergence of 2,807 and 2,259 hatchlings, respectively. We quantified these emergences into 397 green turtle and 302 loggerhead turtle emergence groups. Overall, 85.0% of green turtle and 79.5% of loggerhead turtle groups emerged at night; these accounted for 85.5 and 90.8% of hatchlings, respectively. The remaining emergences were dispersed throughout the day for green turtle nests but confined to the morning in loggerhead turtle nests. Hatchling emergence from individual nests occurred over periods of between 1 and 7 nights, with most hatchlings typically emerging on the first night. Group sizes of green turtles emerging during the day were significantly smaller than those emerging at night. Hatchlings of both species that emerged from nests during the day had longer emergence durations than those that emerged from nests at night only.