996 resultados para Characterization problem
Resumo:
The integration of geophysical data into the subsurface characterization problem has been shown in many cases to significantly improve hydrological knowledge by providing information at spatial scales and locations that is unattainable using conventional hydrological measurement techniques. In particular, crosshole ground-penetrating radar (GPR) tomography has shown much promise in hydrology because of its ability to provide highly detailed images of subsurface radar wave velocity, which is strongly linked to soil water content. Here, we develop and demonstrate a procedure for inverting together multiple crosshole GPR data sets in order to characterize the spatial distribution of radar wave velocity below the water table at the Boise Hydrogeophysical Research Site (BHRS) near Boise, Idaho, USA. Specifically, we jointly invert 31 intersecting crosshole GPR profiles to obtain a highly resolved and consistent radar velocity model along the various profile directions. The model is found to be strongly correlated with complementary neutron porosity-log data and is further corroborated by larger-scale structural information at the BHRS. This work is an important prerequisite to using crosshole GPR data together with existing hydrological measurements for improved groundwater flow and contaminant transport modeling.
Some characterization problems associated with the bivariate exponential and geometric distributions
Resumo:
It is highly desirable that any multivariate distribution possessescharacteristic properties that are generalisation in some sense of the corresponding results in the univariate case. Therefore it is of interest to examine whether a multivariate distribution can admit such characterizations. In the exponential context, the question to be answered is, in what meaning— ful way can one extend the unique properties in the univariate case in a bivariate set up? Since the lack of memory property is the best studied and most useful property of the exponential law, our first endeavour in the present thesis, is to suitably extend this property and its equivalent forms so as to characterize the Gumbel's bivariate exponential distribution. Though there are many forms of bivariate exponential distributions, a matching interest has not been shown in developing corresponding discrete versions in the form of bivariate geometric distributions. Accordingly, attempt is also made to introduce the geometric version of the Gumbel distribution and examine several of its characteristic properties. A major area where exponential models are successfully applied being reliability theory, we also look into the role of these bivariate laws in that context. The present thesis is organised into five Chapters
Resumo:
The integration of geophysical data into the subsurface characterization problem has been shown in many cases to significantly improve hydrological knowledge by providing information at spatial scales and locations that is unattainable using conventional hydrological measurement techniques. The investigation of exactly how much benefit can be brought by geophysical data in terms of its effect on hydrological predictions, however, has received considerably less attention in the literature. Here, we examine the potential hydrological benefits brought by a recently introduced simulated annealing (SA) conditional stochastic simulation method designed for the assimilation of diverse hydrogeophysical data sets. We consider the specific case of integrating crosshole ground-penetrating radar (GPR) and borehole porosity log data to characterize the porosity distribution in saturated heterogeneous aquifers. In many cases, porosity is linked to hydraulic conductivity and thus to flow and transport behavior. To perform our evaluation, we first generate a number of synthetic porosity fields exhibiting varying degrees of spatial continuity and structural complexity. Next, we simulate the collection of crosshole GPR data between several boreholes in these fields, and the collection of porosity log data at the borehole locations. The inverted GPR data, together with the porosity logs, are then used to reconstruct the porosity field using the SA-based method, along with a number of other more elementary approaches. Assuming that the grid-cell-scale relationship between porosity and hydraulic conductivity is unique and known, the porosity realizations are then used in groundwater flow and contaminant transport simulations to assess the benefits and limitations of the different approaches.
Resumo:
Reliability analysis is a well established branch of statistics that deals with the statistical study of different aspects of lifetimes of a system of components. As we pointed out earlier that major part of the theory and applications in connection with reliability analysis were discussed based on the measures in terms of distribution function. In the beginning chapters of the thesis, we have described some attractive features of quantile functions and the relevance of its use in reliability analysis. Motivated by the works of Parzen (1979), Freimer et al. (1988) and Gilchrist (2000), who indicated the scope of quantile functions in reliability analysis and as a follow up of the systematic study in this connection by Nair and Sankaran (2009), in the present work we tried to extend their ideas to develop necessary theoretical framework for lifetime data analysis. In Chapter 1, we have given the relevance and scope of the study and a brief outline of the work we have carried out. Chapter 2 of this thesis is devoted to the presentation of various concepts and their brief reviews, which were useful for the discussions in the subsequent chapters .In the introduction of Chapter 4, we have pointed out the role of ageing concepts in reliability analysis and in identifying life distributions .In Chapter 6, we have studied the first two L-moments of residual life and their relevance in various applications of reliability analysis. We have shown that the first L-moment of residual function is equivalent to the vitality function, which have been widely discussed in the literature .In Chapter 7, we have defined percentile residual life in reversed time (RPRL) and derived its relationship with reversed hazard rate (RHR). We have discussed the characterization problem of RPRL and demonstrated with an example that the RPRL for given does not determine the distribution uniquely
Resumo:
Chrysonilia sitophila is a common mould in cork industry and has been identified as a cause of IgE sensitization and occupational asthma. This fungal species have a fast growth rate that may inhibit others species’ growth causing underestimated data from characterization of occupational fungal exposure. Aiming to ascertain occupational exposure to fungi in cork industry, were analyzed papers from 2000 about the best air sampling method, to obtain quantification and identification of all airborne culturable fungi, besides the ones that have fast-growing rates. Impaction method don’t allows the collection of a representative air volume, because even with some media that restricts the growth of the colonies, in environments with higher fungal load, such as cork industry, the counting of the colonies is very difficult. Otherwise, impinger method permits the collection of a representative air volume, since we can make dilution of the collected volume. Besides culture methods that allows fungal identification trough macro- and micro-morphology, growth features, thermotolerance and ecological data, we can apply molecular biology with the impinger method, to detect the presence of non-viable particles and potential mycotoxin producers’ strains, and also to detect mycotoxins presence with ELISA or HPLC. Selection of the best air sampling method in each setting is crucial to achieve characterization of occupational exposure to fungi. Information about the prevalent fungal species in each setting and also the eventual fungal load it’s needed for a criterious selection.
Resumo:
BTES (borehole thermal energy storage)systems exchange thermal energy by conduction with the surrounding ground through borehole materials. The spatial variability of the geological properties and the space-time variability of hydrogeological conditions affect the real power rate of heat exchangers and, consequently, the amount of energy extracted from / injected into the ground. For this reason, it is not an easy task to identify the underground thermal properties to use when designing. At the current state of technology, Thermal Response Test (TRT) is the in situ test for the characterization of ground thermal properties with the higher degree of accuracy, but it doesn’t fully solve the problem of characterizing the thermal properties of a shallow geothermal reservoir, simply because it characterizes only the neighborhood of the heat exchanger at hand and only for the test duration. Different analytical and numerical models exist for the characterization of shallow geothermal reservoir, but they are still inadequate and not exhaustive: more sophisticated models must be taken into account and a geostatistical approach is needed to tackle natural variability and estimates uncertainty. The approach adopted for reservoir characterization is the “inverse problem”, typical of oil&gas field analysis. Similarly, we create different realizations of thermal properties by direct sequential simulation and we find the best one fitting real production data (fluid temperature along time). The software used to develop heat production simulation is FEFLOW 5.4 (Finite Element subsurface FLOW system). A geostatistical reservoir model has been set up based on literature thermal properties data and spatial variability hypotheses, and a real TRT has been tested. Then we analyzed and used as well two other codes (SA-Geotherm and FV-Geotherm) which are two implementation of the same numerical model of FEFLOW (Al-Khoury model).
Resumo:
The microtube is a simple and cheap emitter that was widely used throughout the world in the early days of drip irrigation. Its length can be adjusted according to the pressure distribution along the lateral line and the discharge from the microtube can be adjusted by its length. This not only counters the pressure loss due to pipe friction but also makes it suitable for undulating and hilly conditions, where pressure in the lateral line varies considerably according to the differences in elevation. This is the major problem facing the designer, i.e., emitter flow changes as the acting pressure head changes. In this study, a novel micro-sprinkler system is proposed that uses microtube as the emitter and where the length of the microtube can be varied in response to pressure changes along the lateral to give uniformity of emitter discharges. The objective of this work is to develop and validate empirical and semi-theoretical equations for the emitter hydraulics. Laboratory testing of two microtube emitters of different diameter over a range of pressures and discharges was used in the development of the equations relating pressure and discharge, and pressure and length for these emitters. The equations proposed will be used in the design of the micro-sprinkler system, to determine the length of microtube required to give the nominal discharge for any given pressure. The semi-theoretical approach underlined the importance of accurate measurements of the microtube diameter and the uncertainty in the estimation of the friction factor for these tubes.
Resumo:
Hepatitis B is a worldwide health problem affecting about 2 billion people and more than 350 million are chronic carriers of the virus. Nine HBV genotypes (A to I) have been described. The geographical distribution of HBV genotypes is not completely understood due to the limited number of samples from some parts of the world. One such example is Colombia, in which few studies have described the HBV genotypes. In this study, we characterized HBV genotypes in 143 HBsAg-positive volunteer blood donors from Colombia. A fragment of 1306 bp partially comprising HBsAg and the DNA polymerase coding regions (S/POL) was amplified and sequenced. Bayesian phylogenetic analyses were conducted using the Markov Chain Monte Carlo (MCMC) approach to obtain the maximum clade credibility (MCC) tree using BEAST v.1.5.3. Of all samples, 68 were positive and 52 were successfully sequenced. Genotype F was the most prevalent in this population (77%) - subgenotypes F3 (75%) and Fib (2%). Genotype G (7.7%) and subgenotype A2 (15.3%) were also found. Genotype G sequence analysis suggests distinct introductions of this genotype in the country. Furthermore, we estimated the time of the most recent common ancestor (TMRCA) for each HBV/F subgenotype and also for Colombian F3 sequences using two different datasets: (i) 77 sequences comprising 1306 bp of S/POL region and (ii) 283 sequences comprising 681 bp of S/POL region. We also used two other previously estimated evolutionary rates: (i) 2.60 x 10(-4) s/s/y and (ii) 1.5 x 10(-5) s/s/y. Here we report the HBV genotypes circulating in Colombia and estimated the TMRCA for the four different subgenotypes of genotype F. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Hydrocephalus is a common neurological problem in humans, Usually caused by an impairment of cerebrospinal fluid (CSF) flow or absorption. A reliable induced model of chronic hydrocephalus in mice would be useful to test hypotheses using genetic mutants. Our goal was to characterize behavioral and histological changes in juvenile and Young adult mice with kaolin (aluminum silicate) -induced hydrocephalus. Seven-day old and 7-8 week old mice received injection of kaolin into the cisterna magna. Behavior was assessed repeatedly. Seven or 14 days following kaolin, magnetic resonance (MR) imaging was used to assess ventricle size. In hydrocephalic mice, body weight was significantly lower than in age-matched saline-injected sham controls and the gait and posture score were impaired. Juvenile mice developed severe ventriculomegaly and had reduced corpus callosum thickness with gross white matter destruction by 14 days. Reactive astroglial change in white matter and cortex and reduced cellular proliferation in the subependymal zone were also apparent. Young adult mice developed only moderate ventricular enlargement without overt white matter destruction, although there was corpus callosum atrophy and mild astroglial reaction in white matter. Glial fibrillary acidic protein content was significantly higher in juvenile and young adult hydrocephalic mice at 7 and 14 days, but myelin basic protein content was not significantly altered. In conclusion, hydrocephalus induced by percutaneous injection of kaolin in juvenile and young adult mice is feasible. The associated periventricular alterations are essentially the same as those reported in rats of comparable ages. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Previous investigators have suggested that screening-related biases may explain associations between postmenopausal hormone use and breast cancer. To investigate these biases, we studied postmenopausal women in the Nurses' Health Study from 1988 to 1994. Hormone use is associated with increased subsequent screening. Among women not screened in the previous 2 years, the probability difference, comparing current hormone users with others, for having mammography in the following 2 years is 19.5%; among women previously screened, the difference is 4.9%. These differences persist after control for other factors. If the increase in screening is causal, screening by mammogram could be intermediate in the causal pathway to breast cancer diagnosis. To deal with this problem, we restrict attention to a subset of the cohort in which the effect of postmenopausal hormone use on screening is small (women previously screened). In this subset, the rate ratio comparing breast cancer rates among current postmenopausal hormone users with others is 1.28. In a sensitivity analysis, the bias could not by itself plausibly account for the associations in our data. Our data provide evidence of an association between postmenopausal hormone use and breast cancer that is not solely the product of a detection bias.
Resumo:
Atualmente é difícil reconhecer a identidade de muitas espécies neotropicais de Pseudisobrachium Kieffer, 1904, principalmente por que as descrições e ilustrações disponíveis não são suficientes para permitir identificações precisas. Para resolver este problema, foram examinadas 115 espécies válidas, além de seus sinônimos juniores. Foram realizados doze atos nomenclaturais, e reconhecidas 110 espécies válidas para a região Neotropical. Foram designados dois lectótipos: Pristocera crassicornis Westwood and Pristocera haemorrhoidalis Westwood. Foram propostas sete sinonímias novas para espécies: Pseudisobrachium retusum Evans syn. nov. de P. pauxillum Evans; P. cunco Perez syn. nov. de P. erythrocephalum Evans; P. navajo Evans, P. rectangulatum Evans, P. emarginatum Evans e P. foutsi Evans syn. nov. de P. flavinervis Fouts; P. acuminatum Waichert & Azevedo syn. nov. de P. latum Waichert & Azevedo. Foi proposta a seguinte sinonímia nova para gênero: Parisobrachium Kieffer syn. nov. de Dissomphalus Ashmead. Foi estabelecida a seguinte combinação nova e revalidado o nome: Dissomphalus albipes (Kieffer) comb. nov. e nom. rev. de Pseudisobrachium paraguayense Kieffer.
Resumo:
Whooping cough or pertussis was a major cause of childhood morbidity and mortality in the world until the introduction of a whole-cell vaccine in the 1940's. However, since the early 1980's whooping cough cases have increased in many countries, becoming an important problem of public health. This increase may be due to accuracy of laboratory diagnosis and reporting of the disease, a decline in immunity over time, demographic changes, and adaptation of the bacterial population to vaccine-induced immunity. The purpose of this study was to analyze phenotypically and genotypically a collection of 67 Bordetella pertussis isolates recovered during the period 1988-2002 in São Paulo State, Brazil to determine their characteristics and relatedness. All isolates were submitted to susceptibility testing to erythromycin, serotyping, and 56 isolates were analyzed by Pulsed Field Gel Electrophoresis (PFGE). All isolates were susceptible to erythromycin and the majority of them belonged to serotype 1,3. The 56 isolates were classified into 11 PFGE profiles according to the differences in banding patterns. Although more than 60% of the isolates were recovered from patients aged less than three months, almost 15% of them were isolated from adolescents/adults evidencing the increase in the incidence of pertussis among this group of age.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
INTRODUCTION: The dengue hemorrhagic dengue (DHF) remains an important public health problem in Brazil. The objective of this study was to analyze the epidemiological characteristics of DHF cases during the 2003 epidemic in Ceará. METHODS: Suspected DHF cases with onset of symptoms between January and December 2003 were investigated. RESULTS: 37,964 classic dengue cases and 291 DHF cases were reported. Among the cases discarded, 75.5% were serologically positive but did not meet the criteria recommended by the World Health Organization (WHO). The DHF patients' median age was 30 years (2 - 88). Among the hemorrhagic manifestations, petechiae were the most (32.6%) frequent. Cases of gastrointestinal bleeding, ascites, pericardial pleural effusion, hepatomegaly, hypotension and shock showed higher risk of progression to death (p <0.05). CONCLUSIONS: The introduction of a new serotype (DENV-3) in Ceará, which encountered a susceptible population and high vector density, may have been the primary agent responsible for the magnitude of the epidemic. Timely and appropriate medical care, along with an organized care structure are essential for reducing its lethality.
Resumo:
INTRODUCTION: Rabies is an important zoonosis that causes thousands of deaths worldwide each year. Although the terrestrial cycle, mainly transmitted by dogs, is controlled in Brazil, the aerial cycle remains a serious public health issue, besides the economic problem. In the aerial cycle, the haematophagous bat Desmodus rotundus is the main source of infection, where several different species of non-haematophagous bats can be infected and can transmit the virus. METHODS: The aim of this work was to study the epidemiological pattern of rabies using antigenic characterization with monoclonal antibodies and genetic characterization by reverse-transcriptase polymerase chain reaction followed by sequencing and phylogenetic analysis of non-haematophagous bats' and herbivorous animals' central nervous system samples from the western region of the State of São Paulo, Brazil. RESULTS: From 27 samples, 3 antigenic variants were identified: AgV-3, AgV-4, and AgV-6; and from 29 samples, 5 different clusters were identified, all belonging to the rabies virus species. CONCLUSIONS: Although only non-haematophagous bats were evaluated in the studied region, the majority of samples were from antigenic and genetic variants related to haematophagous bats Desmodus rotundus. Samples from the same antigenic variant were segregated in more than one genetic cluster. This study demonstrated the diversity of rabies virus genetic lineages presented and circulating in non-haematophagous bats in the studied region.