22 resultados para Chantransia
Resumo:
This study evaluated the phylogenetic relationship among samples of ""Chantransia"" stage of the Batrachospermales and Thoreales from several regions of the world based on sequences of two genes-the plastid-encoded RUBISCO LSU gene (rbcL) and the nuclear SSU ribosomal DNA gene (SSU rDNA). All sequences of ""Chantransia macrospora"" were shown to belong to Batrachospermum macrosporum based on both molecular markers, confirming evidence from previous studies. In contrast, nine species are now associated with ""Chantransia pygmaea,"" including seven species of the Batrachospermales and two of the Thoreales. Therefore, the presence of ""C. macrospora"" in a stream can be considered reliable evidence that it belongs to B. macrosporum, whereas the occurrence of ""C. pygmaea"" does not allow the recognition of any particular species, since it is associated with at least nine species. Affinities of ""Chantransia"" stages to particular taxa were congruent for 70.5% of the samples comparing the rbcL and SSU analyses, which were associated with the same or closely related species for both markers. Sequence divergences have been reported in the ""Chantransia"" stage in comparison to the respective gametophyte, and this matter deserves further attention.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fourteen culture isolates of freshwater acrochaetioid algae from distinct regions around the world were analysed, including the reddish species Audouinella hermannii, the dubious blue-greenish species A. pygmaea, and Chantransia stages from distinct taxonomic origins in the Batrachospermales sensu lato (Batrachospermaceae, Lemaneaceae and Thoreaceae). Four isolates (two 'Chantransia' stages and two species of Audouinella, A. hermannii and A. pygmaea) were tested under experimental conditions of temperature (10-25°C), irradiance (65 and 300 μmol photons m-2 s-1) and photoperiod (16:8 h and 8:16 h light/dark cycles). Plant colour is proposed as the only vegetative character that can be unequivocally applied to distinguish Audouinella from 'Chantransia', blue-greenish representing Chantransia stages and reddish applying to true Audouinella species (also forming reproductive structures other than monosporangia, e.g. tetrasporangia). Some isolates of A. pygmaea were proven to be unequivocally 'Chantransia stages owing either to production of juvenile gametophytes or to derivation from carpospores. No association of the morphology of A. pygmaea was found with any particular species, thus it should be regarded as a complex involving many species of the Batrachospermales sensu lato, as is also the case with A. macrospora. We therefore recommend that all blue-greenish acrochaetioid algae in freshwater habitats be considered as Chantransia stages of members of the Batrachospermales, and that the informal descriptors pygmaea and macrospora be used to distinguish the two discernable morphologies. Induction of gametophytes occurred under much wider conditions than previously reported, reinforcing the conclusion that requirements are probably species-specific. Although phenotypic plasticity was in evidence, with temperature, irradiance and photoperiod affecting morphology, no alga showed variation outside the limits based on traditional taxonomic studies. No overall trend was observed for vegetative or reproductive characters in response to temperature, irradiance and photoperiod for all the algae tested, only for specific algae or characters. Effects of temperature and irradiance on morphological characters were more evident, as well as strong interactions between these variables, whereas few differences were generally found in response to photoperiod and irradiance.
Resumo:
The morphology and phenology of Sirodotia huillensis was evaluated seasonally in a central Mexican first-order calcareous stream. Water temperature was constant (24-25°C) and pH circumneutral to alkaline (6.7-7.9), and calcium and sulfates were the dominant ions. The gametophyte stages were characterized by the presence of a distinctive mucilaginous layer, a marked difference in phycocyanin to phycoerythrin ratio between female and male plants, and the presence of a carpogonia with a large trichogyne (>60 μm). Occasionally three capogonia were observed on a single basal cell. The 'Chantransia' stages were morphologically similar to those described for the other members of Batrachospermales. A remarkable observation was the formation of dome-shaped structures, consisting of prostrate filaments that are related with the development of new gametophytes. Chromosome numbers were n = 4 for fascicle cells, cortical filament cells and dome-shaped cells, and 2n = 8 for gonimoblast filament cells and 'Chantransia' stage filaments. Gametophytes and 'Chantransia' stages occurred in fast current velocities (60-170 cm/s) and shaded (33.1-121 μmol photons/m2/s) stream segments. The population fluctuated throughout the study period in terms of percentage cover and frequency: the 'Chantransia' stages were most abundant in the rainy season, whereas gametophytic plants had the highest frequency values during the dry season. These results were most likely a result of fluctuations in rainfall and related changes in current velocity. Some characteristics of this population can be viewed as probable adaptations to high current velocities: the mucilaginous layer around plants that reduces drag; potential increase in fertilization by the elongate and plentiful trichogynes and abundant dome-shaped structures producing several gametophytes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Three drainage basins belonging to different drainage systems, but in close proximity, were evaluated to compare the distribution of macroalgal communities in the northwest region of São Paulo State, southeastern Brazil. Monthly samplings were carried out from September 1992 through September 1993 in three sites along the main river of each basin. 10 m length cross segments were evaluated for species per cent cover and richness, on both the population and community levels. Selected stream variables were measured: specific conductance, temperature, turbidity, mean cross-sectional area of the reach, current velocity, pH, and oxygen saturation (%). Principal Coordinate Analysis (PCO), chi-square good-of-fitness, and Pearson Product-Moment correlation coefficient were applied to evaluate the distribution of the macroalgal species. The survey resulted in 36 taxa of macroalgae, of which Cyanophyta was the dominant group (17 taxa or 41.7% of the total), followed by Chlorophyta (15 taxa or 41.7%), Rhodophyta (3 taxa or 8.3%) and Chrysophyta (1 taxon or 2.8%). Stigeoclonium helveticum, 'Chantransia' stage of Batrachospermum spp., and B. delicatulum were the most widespread and frequent macroalgae throughout the basins. The analyses showed that conductance and current velocity were the factors most closely related to the distribution of the macroalgal species. Positive correlation between richness and percent cover was determined, which reinforces the patchiness of stream macroalgal distribution.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Species of Rhodophyta from 10 Conservation Units from the south region of Brazil were surveyed. The samplings were carried out in 105 stream reaches, consisting of 10 m length transects. The floristic survey involved 80 populations, representing three genera, Batrachospermum, Kumanoa and Hildenbrandia plus the 'Chantransia' stages. Batrachospermum was represented by five species (B. arcuatum Kylin, B. atrum (Hudson) Harvey, B. helminthosum Bory, B. keratophytum Bory and B. puiggarianum Grunow in Wittrock & Nordstedt). The genus Kumanoa was represented by K. abilii (Reis) Necchi Junior & Vis and K. ambigua (Montagne) Entwisle et al., while Hildenbrandia only by H. angolensis W.West & G.S.West. Our results confirm Batachospermum as the best represented genus, in terms of species number, among freshwater Rhdophyta. B. arcuatum was a new record for the south region of Brazil, thus extending its austral distribution range.
Resumo:
Distribution and seasonal dynamics of freshwater Rhodophyta were investigated in the Preto River basin, located in northwestern São Paulo State, southeastern Brazil. Twenty-two sites were sampled, six monthly during one year, four bimonthly during two years, and 12 twice (hot-rainy and cool-dry seasons) during the study period (May 1989 through March 1991). Red algal representatives were found in 19 sites (86.4%). Four species occurred in the basin with varying frequencies: Batrachospermum delicatulum (54.5%), Compsopogon coeruleus (36.4%), B. bicudoi (13.6%) and B. virgatum (4.5%). In addition, 'Chantransia' stage of the batrachospermalean species was found in 17 sites (77.3%). B. bicudoi, B. virgatum and C. coeruleus occurred only in large stream segments (greater-than-or-equal-to 3-order), generally in the main river, whereas B. delicatulum was more frequent in small streams (less-than-or-equal-to 3-order). The stream variables most closely related to the species distribution in the basin were specific conductance, pH and oxygen. B. bicudoi and B. delicatulum showed a marked seasonality: gametophytes were observed from late fall to early spring, while the 'Chantransia' stage generally occurred throughout the year. C. coeruleus was observed throughout the year in most sites, but the populations were generally more abundant from late fall to early spring. The combination of lower temperature and reduced turbidity resulting in increased illumination to the benthic algae during the dry winter months promotes the gametophytic growth of the batrachospermalean species, whereas current velocity was found to be the most influential stream variable for C. coeruleus. The persistance of the 'Chantransia' stage throughout the year as well as its tolerance to wider environmental conditions are key factors in the efficiency of the batrachospermalean life history strategy in lotic ecosystems.
Resumo:
Microhabitat and plant structure of seven Batrachospermum populations (four of Batrachospermum delicatulum (= Sirodotia delicatula), one of Batrachospermum macrosporum and two of the 'Chantransia' stage), including the influence of physical variables (current velocity, depth, irradiance and substratum), were investigated in four streams of São Paulo State, southeastern Brazil. The populations of B. delicatulum and the 'Chantransia' stage occurred under very diverse microhabitat conditions, which probably contributes to their wide spatial and seasonal distribution in Brazilian streams. Results suggest branch reconfiguration as a probable mechanism of adaptation to current velocity based on the occurrence of: (i) B. macrosporum (a large mucilaginous form with presumably little ability for branch reconfiguration) under lower current velocity than B. delicatulum; (ii) only dense plants in populations with high current velocities (> 60 cm s-1), whereas 53-77% of dense plants were seen in populations exposed to lower currents (< 40 cm s-1); (iii) positive correlations of plant length with internode length in populations under low current velocities and negative correlation in a population with high velocity (132 cm s-1); and (iv) negative correlations of current velocity with plant diameter and internode length in a population under high flow. This study, involving mainly dioecious populations, revealed that B. delicatulum displayed higher fertilization rates than B. macrosporum. A complementary explanation for a dioecious species to increase fertilization success was proposed consisting of outcrossing among intermingled male and female adjacent plants within an algal spot.
Resumo:
The responses of relative growth rate (% day-1) and pigment content (chlorophyll a, phycocyanin and phycoerythrin) to temperature, irradiance and photoperiod were analyzed in culture in seven freshwater red algae: Audouinella hermannii (Roth) Duby, Audouinella pygmaea (Kützing) Weber-van Bosse, Batrachospermum ambiguum Montagne, Batrachospermum delicatulum (Skuja) Necchi et Entwisle, 'Chantransia' stages of B. delicatulum and Batrachospermum macrosporum Montagne and Compsopogon coeruleus (C. Agardh) Montagne. Experimental conditions included temperatures of 10, 15, 20 and 25°C and low and high irradiances (65 and 300 μmol photons m-2 s-1, respectively). Long and short day lengths (16:8 and 8:16 LD cycles) were also applied at the two irradiances. Growth effects of temperature and irradiance were evident in most algae tested, and there were significant interactions among treatments. Most freshwater red algae had the best growth under low irradiance, confirming the preference of freshwater red algae for low light regimens. In general there was highest growth rate in long days and low irradiance. Growth optima in relation to temperature were species-specific and also varied between low and high irradiances for the same alga. The most significant differences in pigment content were related to temperature, whereas few significant differences could be attributed to variation in irradiance and photoperiod or interactions among the three parameters. The responses were species-specific and also differed for pigments in distinct temperatures, irradiances and photoperiods in the same alga. Phycocyanin was generally more concentrated than phycoerythrin and phycobiliproteins were more concentrated than chlorophyll a. The highest total pigment contents were found in two species typical of shaded habitats: A. hermannii and C. coeruleus. The expected inverse relationship of pigment with irradiance was observed only in C. coeruleus. In general, the most favorable conditions for growth were not coincident with those with highest pigment contents.
Resumo:
Thirteen populations of Thorea were analyzed from central Mexico and south-eastern Brazil. All populations were considered as belonging to a single species [Thorea hispida (Thore) Desvaux], with wide variation of morphological features. Secondary branches varying in frequency were observed in several populations with an overlapping in the range of branch density for Thorea violacea Bory and T. hispida (0-9 and 11-41 per 30 mm, respectively). As this is the most distinguishing character and on the basis of the overlapping (within a same population or even a single plant), we regarded T. violacea as a synonym of T. hispida. 'Chantransia' stage in culture, as well as gametophyte and carposporophyte were described in detail. We confirmed the coexistence of asexual monosporangia with sexual reproductive structures (carpogonia and spermatangia) and carposporangia. Size, content, arrangement and chromosome number were the most distinctive characteristics among spermatangia, carposporangia and monosporangia. Monosporangia can be promptly differentiated from spermatangia by their granulated content and larger size but they are similar to carposporangia in shape and size; however, monosporangia are not arranged in fascicles. Structures resembling bisporangia were observed in female plants of some populations. Chromosome numbers were n = 4 for spermatangia and fascicle cells, and 2n ca8 for gonimoblast filaments, carpospores and the 'Chantransia' stage cells. The populations of Thorea from central Mexico and south-eastern Brazil corroborated the known world distribution for T. hispida, consisting dominantly of tropical to subtropical rainforests, sometimes extending into warm temperate areas. Thorea hispida occurred in warm (temperature 17.6-28.0°C), neutral to alkaline (pH 7.0-8.0), high ion content (specific conductance 59-2140 μS cm-1), moderate flowing (current velocity 17-43 cm/s) and shallow waters (depth <50 cm); these data are essentially similar to previous reports.
Resumo:
Responses of net photosynthetic rates to temperature, irradiance, pH/inorganic carbon and diurnal rhythm were analyzed in 15 populations of eight freshwater red algal species in culture and natural conditions. Photosynthetic rates were determined by oxygen concentration using the light and dark bottles technique. Parameters derived from the photosynthesis-irradiance curves indicated adaptation to low irradiance for all freshwater red algae tested, confirming that they tend to occur under low light regimes. Some degree of photoinhibition (β = -0.33-0.01 mg O2 g-1 DW h-1 (μmol photons m-2 s-1)-1) was found for all species/populations analyzed, whereas light compensation points (lc) were very low (≤ 2 μmol photons m- photons s-1) for most algae tested. Saturation points were low for all algae tested (lk = 6-54 μmol photons m-2 S-1; lS = 20-170 μmol photons m-2 s-1). Rates of net photosynthesis and dark respiration responded to the variation in temperature. Optimum temperature values for net photosynthesis were variable among species and populations so that best performances were observed under distinct temperature conditions (10, 15, 20 or 25°C). Rates of dark respiration exhibited an increasing trend with temperature, with highest values under 20-25°C. Results from pH experiments showed best photosynthetic performances under pH 8.5 or 6.5 for all but one species, indicating higher affinity for inorganic carbon as bicarbonate or indistinct use of bicarbonate and free carbon dioxide. Diurnal changes in photosynthetic rates revealed a general pattern for all algae tested, which was characterized by two relatively clear peaks, with some variations around it: a first (higher) during the morning (07.00-11.00 hours.) and a second (lower) in the afternoon (14.00-18.00 hours). Comparative data between the 'Chantransia' stage and the respective gametophyte for one Batrachospermum population revealed higher values (ca 2-times) in the latter, much lower than previously reported. The physiological role of the 'Chantransia' stage needs to be better analyzed.