948 resultados para Changes in the South


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report down-core sedimentary Nd isotope (epsilon Nd) records from two South Atlantic sediment cores, MD02-2594 and GeoB3603-2, located on the western South African continental margin. The core sites are positioned downstream of the present-day flow path of North Atlantic Deep Water (NADW) and close to the Southern Ocean, which makes them suitable for reconstructing past variability in NADW circulation over the last glacial cycle. The Fe-Mn leachates epsilon Nd records show a coherent decreasing trend from glacial radiogenic values towards less radiogenic values during the Holocene. This trend is confirmed by epsilon Nd in fish debris and mixed planktonic foraminifera, albeit with an offset during the Holocene to lower values relative to the leachates, matching the present-day composition of NADW in the Cape Basin. We interpret the epsilon Nd changes as reflecting the glacial shoaling of Southern Ocean waters to shallower depths combined with the admixing of southward flowing Northern Component Water (NCW). A compilation of Atlantic epsilon Nd records reveals increasing radiogenic isotope signatures towards the south and with increasing depth. This signal is most prominent during the Last Glacial Maximum (LGM) and of similar amplitude across the Atlantic basin, suggesting continuous deep water production in the North Atlantic and export to the South Atlantic and the Southern Ocean. The amplitude of the epsilon Nd change from the LGM to Holocene is largest in the southernmost cores, implying a greater sensitivity to the deglacial strengthening of NADW at these sites. This signal impacted most prominently the South Atlantic deep and bottom water layers that were particularly deprived of NCW during the LGM. The epsilon Nd variations correlate with changes in 231Pa/230Th ratios and benthic d13C across the deglacial transition. Together with the contrasting 231Pa/230Th: epsilon Nd pattern of the North and South Atlantic, this indicates a progressive reorganization of the AMOC to full strength during the Holocene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The time scale of the response of the high-latitude dayside ionospheric flow to changes in the North-South component of the interplanetary magnetic field (IMF) has been investigated by examining the time delays between corresponding sudden changes. Approximately 40 h of simultaneous IMF and ionospheric flow data have been examined, obtained by the AMPTE-UKS and -IRM spacecraft and the EISCAT “Polar” experiment, respectively, in which 20 corresponding sudden changes have been identified. Ten of these changes were associated with southward turnings of the IMF, and 10 with northward turnings. It has been found that the corresponding flow changes occurred simultaneously over the whole of the “Polar” field-of-view, extending more than 2° in invariant latitude, and that the ionospheric response delay following northward turnings is the same as that following southward turnings, though the form of the response is different in the two cases. The shortest response time, 5.5 ± 3.2 min, is found in the early- to mid-afternoon sector, increasing to 9.5 ± 3.0 min in the mid-morning sector, and to 9.5 ± 3.1 min near to dusk. These times represent the delays in the appearance of perturbed flows in the “Polar” field-of-view following the arrival of IMF changes at the subsolar magnetopause. Overall, the results agree very well with those derived by Etemadi et al. (1988, Planet. Space Sci.36, 471) from a general cross-correlation analysis of the IMF Bz and “Polar” beam-swinging vector flow data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Columbia Channel (CCS) system is a depositional system located in the South Brazilian Basin, south of the Vitoria-Trindade volcanic chain. It lies in a WNW-ESE direction on the continental rise and abyssal plain, at a depth of between 4200 and 5200 m. It is formed by two depocenters elongated respectively south and north of the channel that show different sediment patterns. The area is swept by a deep western boundary current formed by AABW. The system has been previously interpreted has a mixed turbidite-contourite system. More detailed study of seismic data permits a more precise definition of the modern channel morphology, the system stratigraphy as well as the sedimentary processes and control. The modern CCS presents active erosion and/or transport along the channel. The ancient Oligo-Neogene system overlies a ""upper Cretaceous-Paleogene"" sedimentary substratum (Unit U1) bounded at the top by a major erosive ""late Eocene-early Oligocene"" discordance (D2). This ancient system is subdivided into 2 seismic units (U2 and U3). The thick basal U2 unit constitutes the larger part of the system. It consists of three subunits bounded by unconformities: D3 (""Oligocene-Miocene boundary""), D4 (""late Miocene"") and D5 (""late Pliocene""). The subunits have a fairly tabular geometry in the shallow NW depocenter associated with predominant turbidite deposits. They present a mounded shape in the deep NE depocenter, and are interpreted as forming a contourite drift. South of the channel, the deposits are interpreted as a contourite sheet drift. The surficial U3 unit forms a thin carpet of deposits. The beginning of the channel occurs at the end of U1 and during the formation of D2. Its location seems to have been determined by active faults. The channel has been active throughout the late Oligocene and Neogene and its depth increased continuously as a consequence of erosion of the channel floor and deposit aggradation along its margins. Such a mixed turbidite-contourite system (or fan drift) is characterized by frequent, rapid lateral facies variations and by unconformities that cross the whole system and are associated with increased AABW circulation. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Community Climate System Model version 3 is used to analyse changes in water mass subduction rates in the South Atlantic Ocean over the 21st century. The model results are first compared to observations over 1950-2000, and shown to be rather good. The subduction rates do not change significantly over the 21st century, but the densities at which water masses form become significantly lighter. The strong westerly winds in this region do not change much, which suggests small changes to the rate at which the Atlantic sector of the Southern Ocean takes up heat and carbon dioxide over the 21st century.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A large, subsurface oxygen deficiency zone is located in the eastern tropical South Pacific Ocean (ETSP). The large-scale circulation in the eastern equatorial Pacific and off Peru in November/December 2012 shows the influence of the equatorial current system, the eastern boundary currents, and the northern reaches of the subtropical gyre. In November 2012 the Equatorial Undercurrent is centered at 250 m depth, deeper than in earlier observations. In December 2012 the equatorial water is transported southeastward near the shelf in the Peru-Chile Undercurrent with a mean transport of 1.6 Sv. In the oxygen minimum zone (OMZ) the flow is overlaid with strong eddy activity on the poleward side of the OMZ. Floats with parking depth at 400 m show fast westward flow in the mid-depth equatorial channel and sluggish flow in the OMZ. Floats with oxygen sensors clearly show the passage of eddies with oxygen anomalies. The long-term float observations in the upper ocean lead to a net community production estimate at about 18° S of up to 16.7 mmol C m?3 yr1 extrapolated to an annual rate and 7.7 mmol C m?3 yr?1 for the time period below the mixed layer. Oxygen differences between repeated ship sections are influenced by the Interdecadal Pacific Oscillation, by the phase of El Niño, by seasonal changes, and by eddies and hence have to be interpreted with care. At and south of the equator the decrease in oxygen in the upper ocean since 1976 is related to an increase in nitrate, phosphate, and in part in silicate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Marine Protected Areas (MPAs) are increasingly being recommended as management tools for biodiversity conservation and fisheries. With the purpose of protecting the region's biodiversity and prevent the over exploitation of marine resources, in February 2011 the no-take MPAs of Ilha do Pessegueiro and Cabo Sard~ao were implemented within the “Parque Natural do Sudoeste Alentejano e Costa Vicentina “(PNSACV) Marine Park, south western coast of Portugal. As such, commercial and recreational fishing became prohibited in these areas. In order to evaluate the effects of these no-take MPAs, the structure of their fish assemblages and of adjacent control areas without fishing restrictions were studied between 2011 (immediately after implementation) and 2013 (two years after implementation). A total of 4 sampling campaigns were conducted (summer 2011, winter 2012, summer 2013 and winter 2013) using trammel nets and bottom trawl. Ichthyofaunal assemblages from the no-take MPAs (treatment) were compared with adjacent areas (controls) and changes evaluated as a function of time since protection. Results revealed significant increase in fish abundance after the implementation of the no-take MPAs. Furthermore, significant differences in the structure of fish assemblages (abundance and fish size) between protected and neighbouring areas were rapidly observed upon the implementation of the no-take MPAs. In addition, specimens of larger size occurred more frequently within Ilha do Pessegueiro no-take MPA in the last year of the study. Overall, despite the young age of these no-take MPAs, changes on the structure of their fish assemblages were already evident after only two years of protection, indicating that management measures such as MPA designation may play an important role to promote fisheries sustainable exploitation as well as to protect species with conservation interest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The learner licence is an important component of the graduated driver licensing system. This research describes the driving and licensing experiences of learner drivers in Queensland and New South Wales licensed prior to the changes made to the system in mid-2007. The sample consisted of 392 participants who completed a telephone interview just after they obtained their provisional licence. The results suggest that learner drivers in the two states had many similar experiences when they were obtaining a learner licence. However, once a learner licence was obtained, there were differences in the amount of practice, the supervisor learners practised with, the type of vehicle they used and the amount of unlicensed driving. This paper provides important baseline descriptive data that can be used to measure the impact of the changes that were introduced to the learner licence phase in mid-2007 in both of these states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The lesser grain borer, Rhyzopertha dominica (F.), is a highly destructive pest of stored grain that is strongly resistant to the fumigant phosphine (PH3). Phosphine resistance is due to genetic variants at the rph2 locus that alter the function of the dihydrolipoamide dehydrogenase (DLD) gene. This discovery now enables direct detection of resistance variants at the rph2 locus in field populations. RESULTS: A genotype assay was developed for direct detection of changes in distribution and frequency of a phosphine resistance allele in field populations of R. dominica. Beetles were collected from ten farms in south-east Queensland in 2006 and resampled in 2011. Resistance allele frequency increased in the period from 2006 to 2011 on organic farms with no history of phosphine use, implying that migration of phosphine-resistant R. dominica had occurred from nearby storages. CONCLUSION: Increasing resistance allele frequencies on organic farms suggest local movement of beetles and dispersal of insects from areas where phosphine has been used. This research also highlighted for the first time the utility of a genetic DNA marker in accurate and rapid determination of the distribution of phosphine-resistant insects in the grain value chain. Extending this research over larger landscapes would help in identifying resistance problems and enable timely pest management decisions. © 2013 Society of Chemical Industry © 2013 Society of Chemical Industry 69 6 June 2013 10.1002/ps.3514 Rapid Report Rapid Report © 2013 Society of Chemical Industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the Himalayas, a large area is covered by glaciers and seasonal snow and changes in its extent can influence availability of water in the Himalayan Rivers. In this paper, changes in glacial extent, glacial mass balance and seasonal snow cover are discussed. Glacial retreat was estimated for 1868 glaciers in 11 basins distributed in the Indian Himalaya since 1962. The investigation has shown an overall reduction in glacier area from 6332 to 5329km2 from 1962 to 2001/2 - an overall deglaciation of 16%. Snow line at the end of ablation season on the Chhota Shigri glacier observed using field and satellite methods suggests a change in altitude from 4900 to 5200m from the late 1970s to present. Seasonal snow cover was monitored in the 28 river sub-basins using normalized difference snow index (NDSI) technique in Central and Western Himalaya. The investigation has shown that in the early part of winter, i.e. from October to December, a large amount of snow retreat was observed. For many basins located in lower altitude and in the south of the Pir Panjal range, snow ablation was observed throughout the winter season. In addition, average stream runoff of the Baspa basin for the month of December increased by 75%. This combination of glacial retreat, negative mass balance, early melting of seasonal snow cover and winter-time increase in stream runoff might suggest an influence of global warming on the Himalayan cryosphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Species composition, biomass, density, and diversity of benthic invertebrates from six bard-bottom areas were evaluated. Seasonal collections using a dredge, trawl, and suction and grab samplers yielded 432, 525, and 845 taxa, respectively. Based on collections wltb the different gear types, species composition of invertebrates was found to change bathymetrically. Inner- and mlddle-shelf sites were more similar to each other in terms of invertebrate species composition than they were to outer-shelf sites, regardless of season. Sites on the inner and outer shelf were grouped according to latitude; however, results suggest that depth is apparently a more important determinant of invertebrate species composition than either season or latitude. Sponges generally dominated dredge and trawl collections in terms of biomass. Generally, cnidarians, bryozoans, and sponges dominated at sites In terms of number of taxa collected. The most abundant smaller macrofauna collected in suction and grab samples were polychaetes, amphipods, and mollusks. Densities of the numerically dominant species changed botb seasonally and bathymetrically, with very few of these species restricted to a specific bathymetrlc zone. The high diversity of invertebrates from hard-bottom sites is attributed to the large number of rare species. No consistent seasonal changes in diversity or number of species were noted for individual stations or depth zones. In addition, H and its components showed no definite patterns related to depth or latitude. However, more species were collected at middle-shelf sites than at inner- or outer-shelf sites, which may be related to more stable bottom temperature or greater habitat complexity in that area. (PDF file contains 110 pages.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Year-to-year changes in the weather have a pronounced effect on the quality of the water abstracted from many reservoirs in the UK. In upland reservoirs, the most common weather-related problem is the appearance of coloured water following dry summers and the re-wetting of peat during the winter (Naden & McDonald 1989; George 2000). In lowland reservoirs, the most serious weather-related issue is the growth of bloom- forming species of algae during warm, calm summers (National Rivers Authority 1989). Both of these problems are likely to get worse as the climate becomes warmer and extreme variations in the weather become more common. In this article, the authors describe some of the ways in which recent changes in the weather have influenced the quality of the water stored in a large reservoir in the south-east of England. The reservoir selected for study is the Queen Elizabeth II (QEII), a bankside reservoir situated in the Thames valley. The quality of water stored in this reservoir is generally very good but summer blooms of algae have become increasingly common in recent years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investigating the interplay between continental weathering and erosion, climate, and atmospheric CO2 concentrations is significant in understanding the mechanisms that force the Cenozoic global cooling and predicting the future climatic and environmental response to increasing temperature and CO2 levels. The Miocene represents an ideal test case as it encompasses two distinct extreme climate periods, the Miocene Climatic Optimum (MCO) with the warmest time since 35 Ma in Earth's history and the transition to the Late Cenozoic icehouse mode with the establishment of the east Antarctic ice sheet. However the precise role of continental weathering during this period of major climate change is poorly understood. Here we show changes in the rates of Miocene continental chemical weathering and physical erosion, which we tracked using the chemical index of alteration ( CIA) and mass accumulation rate ( MAR) respectively from Ocean Drilling Program (ODP) Site 1146 and 1148 in the South China Sea. We found significantly increased CIA values and terrigenous MARs during the MCO (ca. 17-15 Ma) compared to earlier and later periods suggests extreme continental weathering and erosion at that time. Similar high rates were revealed in the early-middle Miocene of Asia, the European Alps, and offshore Angola. This suggests that rapid sedimentation during the MCO was a global erosion event triggered by climate rather than regional tectonic activity. The close coherence of our records with high temperature, strong precipitation, increased burial of organic carbon and elevated atmospheric CO2 concentration during the MCO argues for long-term, close coupling between continental silicate weathering, erosion, climate and atmospheric CO2 during the Miocene. Citation: Wan, S., W. M. Kurschner, P. D. Clift, A. Li, and T. Li (2009), Extreme weathering/ erosion during the Miocene Climatic Optimum: Evidence from sediment record in the South China Sea, Geophys. Res. Lett., 36, L19706, doi: 10.1029/2009GL040279.