883 resultados para Chain Split and Computations in Practical Rule Mining
Resumo:
A novel association rule mining algorithm is composed, using the unit cube chain decomposition structures introduced in [HAN, 1966; TON, 1976]. [HAN, 1966] established the chain split theory. [TON, 1976] invented an excellent chain computation framework which brings chain split into the practical domain. We integrate these technologies around the rule mining procedures. Effectiveness is related to the intention of low complexity of rules mined. Complexity of the procedure composed is complementary to the known Apriori algorithm which is defacto standard in rule mining area.
Resumo:
Prognostic procedures can be based on ranked linear models. Ranked regression type models are designed on the basis of feature vectors combined with set of relations defined on selected pairs of these vectors. Feature vectors are composed of numerical results of measurements on particular objects or events. Ranked relations defined on selected pairs of feature vectors represent additional knowledge and can reflect experts' opinion about considered objects. Ranked models have the form of linear transformations of feature vectors on a line which preserve a given set of relations in the best manner possible. Ranked models can be designed through the minimization of a special type of convex and piecewise linear (CPL) criterion functions. Some sets of ranked relations cannot be well represented by one ranked model. Decomposition of global model into a family of local ranked models could improve representation. A procedures of ranked models decomposition is described in this paper.
Resumo:
2006
Resumo:
The purpose of this investigation was to determine whether changes in myosin heavy chain (MHC) expression and atrophy in rat skeletal muscle are observed during transition from cardiac hypertrophy to chronic heart failure (CHF) induced by aortic stenosis (AS). AS and control animals were studied 12 and 18 weeks after surgery and when overt CHF had developed in AS animals, 28 weeks after the surgery. The following parameters were studied in the soleus muscle: muscle atrophy index (soleus weight/body weight), muscle fibre diameter and frequency and MHC expression. AS animals presented decreases in both MHC1 and type I fibres and increases in both MHC2a and type IIa fibres during late cardiac hypertrophy and CHF. Type IIa fibre atrophy occurred during CHF. In conclusion, our data demonstrate that skeletal muscle phenotype changes occur in both late cardiac hypertrophy and heart failure; this suggests that attention should be given to the fact that skeletal muscle phenotype changes occur prior to overt heart failure symptoms.
Resumo:
The purpose of this investigation was to determine whether changes in myosin heavy chain (MHC) expression and atrophy in rat skeletal muscle are observed during transition from cardiac hypertrophy to chronic heart failure (CHF) induced by aortic stenosis (AS). AS and control animals were studied 12 and 18 weeks after surgery and when overt CHF had developed in AS animals, 28 weeks after the surgery. The following parameters were studied in the soleus muscle: muscle atrophy index (soleus weight/body weight), muscle fibre diameter and frequency and MHC expression. AS animals presented decreases in both MHC1 and type I fibres and increases in both MHC2a and type IIa fibres during late cardiac hypertrophy and CHF. Type IIa fibre atrophy occurred during CHF. In conclusion, our data demonstrate that skeletal muscle phenotype changes occur in both late cardiac hypertrophy and heart failure; this suggests that attention should be given to the fact that skeletal muscle phenotype changes occur prior to overt heart failure symptoms.
Resumo:
Stable wakefulness requires orexin/hypocretin neurons (OHNs) and OHR2 receptors. OHNs sense diverse environmental cues and control arousal accordingly. For unknown reasons, OHNs contain multiple excitatory transmitters, including OH peptides and glutamate. To analyze their cotransmission within computational frameworks for control, we optogenetically stimulated OHNs and examined resulting outputs (spike patterns) in a downstream arousal regulator, the histamine neurons (HANs). OHR2s were essential for sustained HAN outputs. OHR2-dependent HAN output increased linearly during constant OHN input, suggesting that the OHN→HAN(OHR2) module may function as an integral controller. OHN stimulation evoked OHR2-dependent slow postsynaptic currents, similar to midnanomolar OH concentrations. Conversely, glutamate-dependent output transiently communicated OHN input onset, peaking rapidly then decaying alongside OHN→HAN glutamate currents. Blocking glutamate-driven spiking did not affect OH-driven spiking and vice versa, suggesting isolation (low cross-modulation) of outputs. Therefore, in arousal regulators, cotransmitters may translate distinct features of OHN activity into parallel, nonredundant control signals for downstream effectors.
Resumo:
"May 1993."
Resumo:
Vita.
Resumo:
Mode of access: Internet.
Resumo:
The radiation chemistry of poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP) with a TFE mole fraction of 0.90 has been studied under vacuum using Co-60 gamma-radiation over a range of temperatures and absorbed doses. The radiolysis temperatures were 300, 363, 423, 523 and 543 K. New structure formation in the copolymers was analysed by solid-state F-19 NMR spectroscopy. The new structures formed in the copolymers have been identified and the G-values for the formation of new chemical structures have been investigated at 363 and 523 K. These two temperatures are just above and just below the polymer T-g and T-m, respectively. At the lower temperature, there was no evidence for any chain branching and an estimate of G(S) of 1.0 was obtained. A value of G(S) of 1.3 and a minimum value of G(X)(Y) of 1.3 were obtained at 523 K. (C) 2003 Society of Chemical Industry.
Resumo:
Stochastic simulation is a recognised tool for quantifying the spatial distribution of geological uncertainty and risk in earth science and engineering. Metals mining is an area where simulation technologies are extensively used; however, applications in the coal mining industry have been limited. This is particularly due to the lack of a systematic demonstration illustrating the capabilities these techniques have in problem solving in coal mining. This paper presents two broad and technically distinct areas of applications in coal mining. The first deals with the use of simulation in the quantification of uncertainty in coal seam attributes and risk assessment to assist coal resource classification, and drillhole spacing optimisation to meet pre-specified risk levels at a required confidence. The second application presents the use of stochastic simulation in the quantification of fault risk, an area of particular interest to underground coal mining, and documents the performance of the approach. The examples presented demonstrate the advantages and positive contribution stochastic simulation approaches bring to the coal mining industry