999 resultados para Chaetoceros sp.
Resumo:
Dissertação de Mestrado em Gestão e Conservação da Natureza.
Resumo:
In this study ,the effects of Pseudomonas fluorescence obtained from generator pond water of Kolahi as supplementary and four algae consisting of : Chaetoceros sp, Chlorella and Skeletonema sp and Tetraselmis sp, three types of artemia as live food larval states from zoa to postlarvae (PL4 ) Penaeus indicus were investigated. The results indicate that Pseudomonas fluorescence has positive effect on Penaeus indicits larvae growth and their living food. Effective ranges at minimum and maximum were estimated. In most cases optimum dosage was approximately determined. Optimum dosage is between 50 -150 milligrams per liter for living food and Penaeus larval More than 200 milligram per liter resulted in a negative effect on the growth and survival. Also the results indicate Uromiana artemia. Requires a higher concentration of the bacteria the imported artemia. As a conclusion it is recommended to introduce Pseudonionas fluorescence as a new medium for the growth of some mentioned algae .
Resumo:
The phytoplankton standing crop was assessed in detail along the South Eastern Arabian Sea (SEAS) during the different phases of coastal upwelling in 2009.During phase 1 intense upwelling was observed along the southern transects (8◦N and 8.5◦N). The maximum chlorophyll a concentration (22.7 mg m −3) was observed in the coastal waters off Thiruvananthapuram (8.5◦N). Further north there was no signature of upwelling, with extensive Trichodesmium erythraeum blooms. Diatoms dominated in these upwelling regions with the centric diatom Chaetoceros curvisetus being the dominant species along the 8◦N transect. Along the 8.5◦N transect pennate diatoms like Nitzschia seriata and Pseudo-nitzschia sp. dominated. During phase 2, upwelling of varying intensity was observed throughout the study area with maximum chlorophyll a concentrations along the 9◦N transect (25 mg m−3) with Chaetoceros curvisetus as the dominant phytoplankton. Along the 8.5◦N transect pennate diatoms during phase 1 were replaced by centric diatoms like Chaetoceros sp. The presence of solitary pennate diatoms Amphora sp. and Navicula sp. were significant in the waters off Kochi. Upwelling was waning during phase 3 and was confined to the coastal waters of the southern transects with the highest chlorophyll a concentration of 11.2 mg m−3. Along with diatoms, dinoflagellate cell densities increased in phases 2 and 3. In the northern transects (9◦N and 10◦N) the proportion of dinoflagellates was comparatively higher and was represented mainly by Protoperidinium spp., Ceratium spp. and Dinophysis spp.
Resumo:
The Middle Eocene Climatic Optimum (MECO) is a major transient warming event that occurred at ~ 40 Ma and reversed a long-term cooling trend through the early and middle Eocene. We report the results of a high-resolution, quantitative study of siliceous microfossils at Ocean Drilling Program Sites 748 and 749 (Southern Kerguelen Plateau, Southern Ocean, ~ 58°S) across a ~ 1.4 myr interval spanning the MECO event. At both sites, a significant increase in biosiliceous sedimentation is associated with the MECO event. Rich siliceous planktonic microfossil assemblages in this interval are unusual in that they are dominated by ebridians, with radiolarians as a secondary major component. Silicoflagellates and diatoms comprise only a minor fraction of the assemblage, in contrast to siliceous microfossil assemblages that characterize modern Southern Ocean sediments. Based on our new siliceous microfossil records, we interpret two ~ 300 kyr periods of elevated nutrient availability in Southern Ocean surface waters which span the peak warming interval of the MECO and the post-MECO cooling interval. A diverse assemblage of large silicoflagellates belonging to the Dictyocha grandis plexus is linked to the rapid rise in sea-surface temperatures immediately prior to peak warmth, and a pronounced turnover is observed in both ebridian and silicoflagellate assemblages at the onset of peak warming. The interval of peak warmth is also characterized by high abundance of cosmopolitan ebridians (e.g., Ammodochium spp.) and silicoflagellates (e.g., Naviculopsis spp.), and increased abundance of tropical and subtropical diatom genera (e.g., Asterolampra and Azpeitia). These observations confirm the relative pattern of temperature change interpreted from geochemical proxy data at multiple Southern Ocean sites. Furthermore, rapid assemblage changes in both autotrophic and heterotrophic siliceous microfossil groups indicate a reorganization of Southern Ocean plankton communities in response to greenhouse warming during the MECO event.
Resumo:
In the Arctic, under-ice primary production is limited to summer months and is not only restricted by ice thickness and snow cover but also by the stratification of the water column, which constrains nutrient supply for algal growth. RV Polarstern visited the ice-covered Eastern Central basins between 82 to 89°N and 30 to 130°E in summer 2012 when Arctic sea ice declined to a record minimum. During this cruise, we observed a widespread deposition of ice algal biomass of on average 9 g C per m**2 to the deep-sea floor of the Central Arctic basins. Data from this cruise will contribute to assessing the impact of current climate change on Arctic productivity, biodiversity, and ecological function.
Resumo:
Early Oligocene siliceous microfossils were recovered in the upper c. 193 m of the CRP-3 drillcore. Although abundance and preservation are highly variable through this section, approximately 130 siliceous microfossil taxa were identified, including diatoms, silicoflagellates, ebridians, chrysophycean cysts, and endoskeletal dinoflagellates. Well-preserved and abundant assemblages characterize samples in the upper c. 70 m and indicate deposition in a coastal setting with water depths between 50 and 200 m. Abundance fluctuations over narrow intervals in the upper c. 70 mbsf are interpreted to reflect environmental changes that were either conducive or deleterious to growth and preservation of siliceous microfossils. Only poorly-preserved (dissolved, replaced, and/or fragmented) siliceous microfossils are present from c. 70 to 193 mbsf. Diatom biostratigraphy indicates that the CRP-3 section down to c. 193 mbsf is early Oligocene in age. The lack of significant changes in composition of the siliceous microfossil assemblage suggests that no major hiatuses are present in this interval. The first occurrence (FO) of Cavitatus jouseanus at 48.44 mbsf marks the base of the Cavitatus jouseanus Zone. This datum is inferred to be near the base of Subchron C12n at c. 30.9 Ma. The FO of Rhizosolenia antarctica at 68.60 mbsf marks the base of the Rhizosolenia antarctica Zone. The FO of this taxon is correlated in deep-sea sections to Chron C13 (33.1 to 33.6 Ma). However, the lower range of R. antarctica is interpreted as incomplete in the CRP-3 drillcore, as it is truncated at an underlying interval of poor preservation: therefore, an age of c. 33.1 to 30.9 Ma is inferred for interval between c. 70 and 50 mbsf. The absence of Hemiaulus caracteristicus from diatom-bearing interval of CRP-3 further indicates an age younger than c. 33 Ma (Subchron C13n) for strata above c. 193 mbsf. Siliceous microfossil assemblages in CRP-3 are significantly different from the late Eocene assemblages reported CIROS-1 drillcore. The absence of H. caracteristicus, Stephanopyxis splendidus, and Pterotheca danica, and the ebridians Ebriopsis crenulata, Parebriopsis fallax, and Pseudoammodochium dictyoides in CRP-3 indicates that the upper 200 m of the CRP-3 drillcore is equivalent to part of the stratigraphic interval missing within the unconformity at c. 366 mbsf in CIROS-1.
Resumo:
Species composition, abundance, and biomass of phytoplankton in the surface water layer were determined at 10 stations in the central part of the Western Basin (WB) and at one station in the Eastern Basin (EB) of the Large Aral Sea. 42 algal species were found. Diatoms had the highest number of species. Similarity of phytoplankton composition in the WB was high, whereas phytoplankton composition in the WB and EB differed significantly. In WB abundance and biomass of phytoplankton varied from 826x10**3 to 6312x10**3 cells/l (aver. 1877x10**3 cells/l) and from 53 to 241 ?g C/l (aver. 95 ?g C/l). In EB the phytoplankton abundance was 915x10**3 cells/l and 93 ?g C/l. Vertical distribution of phytoplankton in upper 35 m was investigated at one station in WB. Maximum values of phytoplankton abundance and biomass were recorded under the thermocline at 20 m depth. Integrated biomass of phytoplankton was 14 g C/m**2.
Resumo:
Data on relative contents of principal diatom groups in suspended matter collected by a separator on the way of the ship and in bottom sediments from different areas of the Indian Ocean are presented in the paper.
Resumo:
A micropaleontological study of planktonic assemblages on the partially laminated sapropel S5 (late Pleistocene, marine isotope stage (MIS) 5e) was performed in two piston cores from Urania Basin area (eastern Mediterranean, west of Crete): UM94PC16 and UM94PC31 recovered during a PALEOFLUX Project Cruise. The abundance of Florisphaera profunda indicates the development of a deep chlorophyll maximum (DCM) before the anoxic condition at bottom were established, whereas patterns of upper photic zone coccoliths suggest extreme oligotrophy in surface water. The short appearance of Globorotalia scitula and the presence of Globigerinoides ruber in the lower part of sapropel testify to a thermal stratification, also recorded by changes in primary producers. During G. scitula occurrence, diatoms, mainly represented by Pseudosolenia calcar-avis, appear and bloom because of their capability in using nutrients from DCM. Scanning electron microscope analyses performed on selected intervals from UM94PC16 show that the sapropel is organized in microlaminae mostly composed by siliceous microfossils. In particular, sapropel S5 could be related to an enhanced nutrient availability in the lower-middle part of the photic zone, stratified conditions, and a higher continental input.
Resumo:
The biostratigraphic distribution and abundance of lower Oligocene to Pleistocene diatoms is documented from Holes 747A, 747B, 748B, 749B, and 751A drilled during Ocean Drilling Program Leg 120 on the Kerguelen Plateau in the southeast Indian Ocean. The occurrence of middle and upper Eocene diatoms is also documented, but these are rare and occur in discrete intervals. The recovery of several Oligocene to Pleistocene sections with minimal coring gaps, relatively good magnetostratigraphic signatures, and mixed assemblages of both calcareous and siliceous microfossils makes the above four Leg 120 sites important biostratigraphic reference sections for the Southern Ocean and Antarctic continent. A high-resolution diatom zonation divides the last 36 m.y. into 45 zones and subzones. This zonation is built upon an existing biostratigraphic framework developed over the past 20 yr of Southern Ocean/Antarctic deep-sea coring and drilling. After the recent advances from diatom biostratigraphic studies on sediments from Legs 113, 114, 119, and 120, a zonal framework for the Southern Ocean is beginning to stabilize. The potential age resolution afforded by the high-diversity diatom assemblages in this region ranks among the highest of all fossil groups. In addition to the 46 datum levels that define the diatom zones and subzones, the approximate stratigraphic level, age, and magnetic anomaly correlative of more than 150 other diatom datums are determined or estimated. These total 73 datum levels for the Pliocene-Pleistocene, 67 for the Miocene, and 45 for the Oligocene. Greater stratigraphic resolution is possible as the less common and poorly documented species become better known. This high-resolution diatom stratigraphy, combined with good to moderately good magnetostratigraphic control, led to the recognition of more than 10 intervals where hiatuses dissect the Oligocene-Pleistocene section on the Kerguelen Plateau. We propose 12 new diatom taxa and 6 new combination
Resumo:
A wealth of sedimentary records aimed at reconstructing late Quaternary changes in productivity and temperature have been devoted to understanding linkages between the Indo-Pacific Warm Pool (IPWP) and other distant oceanic areas. Most of these reconstructions are based, however, on biogeochemical and sedimentological proxies, with comparatively less attention devoted to microfossils. A high-resolution (<1 ka) study of diatom concentrations and the community at site GeoB10038-4, recovered off southern Sumatra (ca. 6°S, 103°E), closely tracks the variations of diatom concentrations in the westernmost IPWP during the last glacial-interglacial cycle. The diatom record provides evidence that diatom paleoproductivity was highest during interglacials, primarily due to the input of lithogenics and nutrients following the rise in sea level after full glacials. In addition, the co-variation of total diatom concentration and Northern Hemisphere forcing for Marine Isotope Stage 5 suggests a direct response of diatom productivity and upwelling intensity to boreal summer insolation. Temporal shifts of the diverse diatom community at site GeoB10038-4 correspond well with the present-day seasonal monsoon pattern and the strengthening and weakening phases of upwelling along the southern coast of Sumatra. Resting spores of Chaetoceros, typical of nutrient-rich waters, were dominant during periods of highest diatom paleoproductivity and responded to the strengthening of the SE monsoon, while diatoms of oligotrophic to mesotrophic waters characterized intermonsoon periods. The close correspondence between the dominance of upwelling diatoms and the boreal summer insolation resembles the present-day dynamics of diatom production. The observed interglacial highs and glacial lows of diatom productivity at site GeoB10038-4 is a unique pattern in the late Quaternary tropics.
Resumo:
Als man nach dem ersten Weltkrieg im verkleinerten Deutschland nach der Möglichkeit von Neulandgewinnung suchte, dachte man auch an eineTrockenlegung der ostpreußischen Haffe. Aus diesem Anlaß wurden umfangreiche Bohrungen ausgeführt, um ein möglichst genaues Bild vom Untergrunde der Haffe zu bekommen. Auf Veranlassung der Preußischen Geologischen Landesanstalt wurde ich mit der Untersuchung der Diatomeen in den Bohrproben beauftragt. Die Arbeit wurde 1934 begonnen und Ende 1937 wurde der letzte Arbeitsbericht abgeliefert. Die beabsichtigte Veröffentlichung ist bisher unterblieben, weil die Druckvorlagen später verloren gegangen sind. Seitdem sind über die Haffuntersuchungen mehrere Teilergebnisse veröffentlicht worden, von denen hier schon wegen der Terminologie die pollenanalytischen Arbeiten von L. HEIN (1941) und HUGO GROSS (1941) erwähnt seien, auf die im Abschnitt Il 2e näher eingegangen wird. Bei der geologischen Auswertung war Zurückhaltung geboten; denn es wäre gewagt, allein aus der Perspektive der Diatomeenforschung endgültige Aussagen machen zu wollen. Darum habe ich mich bemüht, das Material so weit aufzuschließen, daß es Geologen später auch bei veränderter Fragestellung auswerten können. "Die Theorien wechseln, aber die Tatsachen bleiben." Der Initiative des Herrn Prof. Dr. K. GRIPP und der finanziellen Hilfe der Deutschen Forschungsgemeinschaft ist es zu verdanken, daß die vorliegende Arbeit im Druck erscheinen kann. Zusammenfassung 1. Nur in den alluvialen Schichten des Kurischen Haffs wurden Diatomeen gefunden. 2. Die Diatomeenflora des Kurischen Haffs besteht zur Hauptsache aus Süßwasserformen. 3. Salzwasserformen finden sich in allen Schichten verstreut unter der Süßwasserflora. Wenn sie auch nach Zahl der Arten in manchen Proben einen erheblichen Prozentsatz der Flora ausmachen, so ist doch die Zahl der Individuen stets so gering, daß man nirgends von einer Brackwasserflora sprechen kann. 4. Die Süßwasserflora besteht in den unteren Schichten vorwiegend aus Grundformen; und zwar machen die epiphytischen Bewohner flacher Sumpfgewässer einen großen Teil der Flora aus. 5. In einzelnen Bohrungen kommt in den untersten alluvialen Schichten eine Grundflora mit zahlreichen Mastogloien vor. Dies sind die ältesten diatomeenführenden Schichten, entstanden in isolierten Sumpfgewässern. 6. Die übrigen Schichten mit überwiegender Grundflora sind vermutlich Ablagerungen der Ancyluszeit. 7. Die oberen Schichten, in denen die Planktondiatomeen überwiegen, dürften größtenteils der Litorina-Transgressionszeit angehören, jedoch ist der Transgressions-Kontakt nicht klar zu erkennen. 8. Das Ende der Litorinazeit ist noch weniger erkennbar, da eine grundsätzliche Veränderung der Flora nach oben nicht zu beobachten ist. 9. Die ostbaltischen Charakterformen sind in allen Schichten vertreten.
Resumo:
At present time, there is a lack of knowledge on the interannual climate-related variability of zooplankton communities of the tropical Atlantic, central Mediterranean Sea, Caspian Sea, and Aral Sea, due to the absence of appropriate databases. In the mid latitudes, the North Atlantic Oscillation (NAO) is the dominant mode of atmospheric fluctuations over eastern North America, the northern Atlantic Ocean and Europe. Therefore, one of the issues that need to be addressed through data synthesis is the evaluation of interannual patterns in species abundance and species diversity over these regions in regard to the NAO. The database has been used to investigate the ecological role of the NAO in interannual variations of mesozooplankton abundance and biomass along the zonal array of the NAO influence. Basic approach to the proposed research involved: (1) development of co-operation between experts and data holders in Ukraine, Russia, Kazakhstan, Azerbaijan, UK, and USA to rescue and compile the oceanographic data sets and release them on CD-ROM, (2) organization and compilation of a database based on FSU cruises to the above regions, (3) analysis of the basin-scale interannual variability of the zooplankton species abundance, biomass, and species diversity.
Resumo:
Pack ice around Svalbard was sampled during the expedition ARK XIX/1 of RV "Polarstern" (March-April 2003) in order to determine environmental conditions, species composition and abundances of sea-ice algae and heterotrophic protists during late winter. As compared to other seasons, species diversity of algae (total 40 taxa) was not low, but abundances (5,000-448,000 cells/l) were lower by one to two orders of magnitude. Layers of high algal abundances were observed both at the bottom and in the ice interior. Inorganic nutrient concentrations (NO2, NO3, PO4, Si(OH)4) within the ice were mostly higher than during other seasons, and enriched compared to seawater by enrichment indices of 1.6-24.6 (corrected for losses through the desalination process). Thus, the survival of algae in Arctic pack ice was not limited by nutrients at the beginning of the productive season. Based on less-detailed physical data, light was considered as the most probable factor controlling the onset of the spring ice-algal bloom in the lower part of the ice, while low temperatures and salinities inhibit algal growth in the upper part of the ice at the end of the winter. Incorporation of ice algae probably took place during the entire freezing period. Possible overwintering strategies during the dark period, such as facultative heterotrophy, energy reserves, and resting spores are discussed.
Resumo:
The modern Arctic Ocean is regarded as a barometer of global change and amplifier of global warming (Graversen et al., 2008, doi:10.1038/nature06502) and therefore records of past Arctic change are critical for palaeoclimate reconstruction. Little is known of the state of the Arctic Ocean in the greenhouse period of the Late Cretaceous epoch (65-99 million years ago), yet records from such times may yield important clues to Arctic Ocean behaviour in near-future warmer climates. Here we present a seasonally resolved Cretaceous sedimentary record from the Alpha ridge of the Arctic Ocean. This palaeo-sediment trap provides new insight into the workings of the Cretaceous marine biological carbon pump. Seasonal primary production was dominated by diatom algae but was not related to upwelling as was previously hypothesized (Kitchell and Clark, 1982, doi:10.1016/0031-0182(82)90087-6). Rather, production occurred within a stratified water column, involving specially adapted species in blooms resembling those of the modern North Pacific subtropical gyre (Dore et al., 2008, doi:10.1016/j.pocean.2007.10.002), or those indicated for the Mediterranean sapropels (Kemp et al., 1999, doi:10.1038/18001). With increased CO2 levels and warming currently driving increased stratification in the global ocean (Sarmiento et al., 1998, doi:10.1038/30455), this style of production that is adapted to stratification may become more widespread. Our evidence for seasonal diatom production and flux testify to an ice-free summer, but thin accumulations of terrigenous sediment within the diatom ooze are consistent with the presence of intermittent sea ice in the winter, supporting a wide body of evidence for low temperatures in the Late Cretaceous Arctic Ocean (Falcon-Lang et al., 2004, doi:10.1016/j.palaeo.2004.05.016; Amiot et al., 2004, doi:10.1016/j.epsl.2004.07.015; Otto-Bliesner et al., 2002, doi:10.1029/2001JD000821), rather than recent suggestions of a 15 °C mean annual temperature at this time (Jenkyns et al., 2004, doi:10.1038/nature03143).