999 resultados para Cervell -- Malalties -- Diagnòstic per la imatge
Resumo:
Resumen: La incontinencia fecal es una patología con importantes implicaciones sociosanitarias, con un tratamiento complejo y no siempre satisfactorio, especialmente la incontinencia fecal idiopática. El sistema nervioso central regula los procesos de continencia y defecación. Los estudios de neuroimagen han demostrado ser útiles para caracterizar las áreas cerebrales que controlan el área anorrectal. A partir de un grupo de voluntarias sanas, se ha creado un modelo de caracterización de estas áreas cerebrales anorrectales, que podrá ser utilizado posteriormente para compararlo con un grupo de pacientes con incontinencia fecal idiopática, estudiando posibles diferencias y posibles opciones terapéuticas.
Resumo:
El processament de dades cardíaques és, sinó el que més, un dels més complexes de tractar. El problema principal és que a diferència d’altres parts de l’organisme, el cor del pacient està en moviment continu. Aquest moviment queda representat en les imatges generades pels aparells de captació en forma de soroll. Aquest soroll no només dificulta la detecció de les patologies per part dels cardiòlegs i els especialistes sinó que també en moltes ocasions limita l’aplicació de certes tècniques i mètodes. Així per exemple, l’aplicació de mètodes de visualització 3D (mètodes que permeten generar una representació 3D d’un òrgan) que poden aplicar-se fàcilment en visualització de dades del cervell no són aplicables sobre dades de cor. El Grup d’Informàtica Gràfica de la Universitat de Girona, juntament amb l’Institut de Diagnòstic per la Imatge (IDI) de l'hospital Dr. Josep Trueta, està col·laborant en el desenvolupament de noves eines informàtiques que donin suport al diagnòstic. Una de les prioritats actuals de l'IDI és el tractament de malalties cardíaques. Es disposa d’una plataforma anomenada Starviewer que integra les operacions bàsiques de manipulació i visualització de dades mèdiques. L’objectiu d’aquest projecte és el de desenvolupar i integrar en la plataforma Starviewer els mòduls necessaris per poder tractar, manipular i visualitzar dades cardíaques provinents de ressònancies magnètiques
Resumo:
Estudi, disseny i implementació d’un algorisme de visualització de volums i integrar-lo en la plataforma DTIWeb de visualització i processament de dades de DTI. La plataforma DTIWeb és una plataforma desenvolupada conjuntament entre el Laboratori de Gràfics i Imatge de la Universitat de Girona i d’Institut de Diagnòstic per la imatge de l’Hospital Josep Trueta de Girona. Aquesta plataforma integra els mètodes bàsics de reconstrucció de fibres del cervell. La principal limitació de la plataforma és que no suporta la visualització de models 3D. Aquest fet limita el seu us en la pràctica clínica habitual ja que es fa difícil la interpretació dels mapes de connectivitat que genera
Resumo:
El present Projecte Final de Carrera s’emmarca dins el projecte HRIMAC (Herramienta de Recuperación de Imágenes Mamográficas por Análisis de Contenido), iniciat l’any 2003 i subvencionat pel Ministerio de Ciencia y Tecnología i els fons FEDER. En el projecte HRIMAC hi participa la Universitat de Girona, la Universitat Ramon Llull i especialistes de l’Hospital de Girona Josep Trueta. Aquest PFC pretén ésser una eina per testejar diferents mètodes d’extracció de característiques útils a l’hora de recuperar casos de la base de dades de HRIMAC. S’han estudiat, discutit, analitzat i implementat la caracterització de lesions segons la seva forma. S’han avaluat diferents descriptors de forma per tal de determinar quins són els millors a l’hora de tractar amb lesions mamogràfiques
Resumo:
Estudi, disseny i implementació d’un algorisme de visualització de volums i integrar-lo en la plataforma DTIWeb de visualització i processament de dades de DTI. La plataforma DTIWeb és una plataforma desenvolupada conjuntament entre el Laboratori de Gràfics i Imatge de la Universitat de Girona i d’Institut de Diagnòstic per la imatge de l’Hospital Josep Trueta de Girona. Aquesta plataforma integra els mètodes bàsics de reconstrucció de fibres del cervell. La principal limitació de la plataforma és que no suporta la visualització de models 3D. Aquest fet limita el seu us en la pràctica clínica habitual ja que es fa difícil la interpretació dels mapes de connectivitat que genera
Resumo:
L’objectiu d’aquest projecte és ampliar la plataforma Starviewer integrant els mòduls necessaris per donar suport al diagnòstic de l’estenosi de caròtida permetent interpretar de forma més fàcil les imatges Angiografia per Ressonància Magnètica (ARM). La plataforma Starviewer és un entorn informàtic que integra funcionalitats bàsiques i avançades pel processament i la visualització d’imatges mèdiques. Està desenvolupat pel Grup d’Informàtica Gràfica de la Universitat de Girona i l’Institut de Diagnòstic per la Imatge (IDI) de l’hospital Dr. Josep Trueta. Una de les limitacions de la plataforma és el no suportar el tractament de lesions del sistema vascular. Per això ens proposem a corregir-ho i ampliar les seves extensions per a poder diagnosticar l’estenosi de caròtida
Resumo:
La regeneració òssia és un procés estudiat per experts de tot el món. Aquests experts estudien materials capaços d’accelerar el procés de formació de teixit ossi en zones on s’han produït defectes ossis. Després d’un determinat període de temps de l’aplicació dels materials d’estudi en la zona on hi havia una manca de teixit ossi, s’obtenen imatges d’aquesta zona on l’expert mitjançant l’ inspecció visual d’aquestes imatges avalua si l’os s’ha regenerat bé o no. El problema d’aquest mètode d’avaluació es que requereix d’un expert on la valoració d’aquest és subjectiva i difícil de quantificar, el que pot provocar que hi hagi discordança entre experts. Amb la finalitat de aprofitar les imatges en que es basa l’expert per avaluar la capacitat de regeneració òssia dels materials d’estudi es proposa realitzar un anàlisi quantitatiu de la regeneració òssia basat en el processament d’imatge. L’algorisme dissenyat es capaç de classificar imatges de la mandíbula en: imatges de regeneració bona i dolenta mitjançant la parametrització de l’histograma de nivells de grisos de la imatge, solucionant la falta d’objectivitat del mètode d’avaluació de la regeneració òssia i la necessitat d’un expert per realitzar-la.
Resumo:
El diagnòstic mitjançant la imatge mèdica s’ha convertit en una eina fonamental en la pràctica clínica, permet entre altres coses, reconstruir a partir d’un conjunt d’imatges 2D, obtingudes a partir d’aparells de captació, qualsevol part de l’organisme d’un pacient i representar-lo en un model 3D. Sobre aquest model 3D poden realitzar-se diferents operacions que faciliten el diagnòstic i la presa de decisions als especialistes. El projecte que es presenta forma part del desenvolupament de la plataforma informàtica de visualització i tractament de dades mèdiques, anomenada Starviewer, que desenvolupen conjuntament el laboratori de Gràfics i Imatge (GiLab) de la Universitat de Girona i l’ Institut de Diagnòstic per la Imatge (IDI) de l’Hospital Josep Trueta de Girona. En particular, en aquest projecte es centra en el diagnòstic del càncer colorectal i el desenvolupament de mètodes i tècniques de suport al seu diagnòstic. Els dos punts claus en el tractament d’aqueta patologia són: la detecció de les lesions I l’estudi de l’evolució d’aquestes lesions, una vegada s’ha iniciat el tractament tumoral. L’objectiu principal d’aquest projecte és implementar i integrar en la plataforma Starviewer les tècniques de visualització i processament de dades necessàries per donar suport als especialistes en el diagnòstic de les lesions del colon. Donada la dificultat en el processament de les dades reals del budell ens proposem: dissenyar i implementar un sistema per crear models sintètics del budell; estudiar, implementar i avaluar les tècniques de processament d’imatge que calen per segmentar lesions de budell; dissenyar i implementar un sistema d’exploració del budell iintegrar de tots els mòduls implementats en la plataforma starviewer
Resumo:
L’objectiu d’aquest projecte és integrar a la plataforma Starviewer ( plataforma informàtica de processament i visualització d’imatges mèdiques creada fruit de la col•laboració del Laboratori de Gràfics i Imatge (GILab) de la Universitat de Girona i l’Institut de Diagnòstic per la Imatge (IDI) de l’hospital Dr. Josep Trueta de Girona) per donar suport al diagnòstic un entorn de suport a la inserció de pròtesis, que permeti automatitzar al màxim les operacions que actualment es realitzen de forma manual. Hem de tenir en compte que, tot i que, la imatge més usada pel radiòleg es la radiografia (Rx) també treballa amb tomografia computada (TAC). El TAC dona una visió 3D de l’organisme, mentre que la Rx és 2D
Resumo:
L’objectiu d’aquest projecte es dissenyar i implementar un entorn de suport al diagnòstic dels aneurismes. Aquest entorn s’haurà d’integrar en la plataforma Starviewer. La plataforma Starviewer és un entorn de processament i visualització de dades mèdiques desenvolupat conjuntament entre el Laboratori de Gràfics i Imatge de la UdG i l’ Institut de Diagnòstic per la Imatge de l’Hospital Josep Trueta de Girona. Aquesta plataforma ofereix les funcionalitats bàsiques per diagnosticar a partir d’imatges. Tot i les funcionalitats de la plataforma, en la versió actual no es suporta el processament avançat d’imatge d’angiografia. En aquest projecte ens proposem ampliar aquesta plataforma integrant els mòduls necessaris que permetin el processament d’angiografies usades en el diagnòstic dels aneurismes
Resumo:
Purpose: The objective of this study is to investigate the feasibility of detecting and quantifying 3D cerebrovascular wall motion from a single 3D rotational x-ray angiography (3DRA) acquisition within a clinically acceptable time and computing from the estimated motion field for the further biomechanical modeling of the cerebrovascular wall. Methods: The whole motion cycle of the cerebral vasculature is modeled using a 4D B-spline transformation, which is estimated from a 4D to 2D + t image registration framework. The registration is performed by optimizing a single similarity metric between the entire 2D + t measured projection sequence and the corresponding forward projections of the deformed volume at their exact time instants. The joint use of two acceleration strategies, together with their implementation on graphics processing units, is also proposed so as to reach computation times close to clinical requirements. For further characterizing vessel wall properties, an approximation of the wall thickness changes is obtained through a strain calculation. Results: Evaluation on in silico and in vitro pulsating phantom aneurysms demonstrated an accurate estimation of wall motion curves. In general, the error was below 10% of the maximum pulsation, even in the situation when substantial inhomogeneous intensity pattern was present. Experiments on in vivo data provided realistic aneurysm and vessel wall motion estimates, whereas in regions where motion was neither visible nor anatomically possible, no motion was detected. The use of the acceleration strategies enabled completing the estimation process for one entire cycle in 5-10 min without degrading the overall performance. The strain map extracted from our motion estimation provided a realistic deformation measure of the vessel wall. Conclusions: The authors' technique has demonstrated that it can provide accurate and robust 4D estimates of cerebrovascular wall motion within a clinically acceptable time, although it has to be applied to a larger patient population prior to possible wide application to routine endovascular procedures. In particular, for the first time, this feasibility study has shown that in vivo cerebrovascular motion can be obtained intraprocedurally from a 3DRA acquisition. Results have also shown the potential of performing strain analysis using this imaging modality, thus making possible for the future modeling of biomechanical properties of the vascular wall.
Resumo:
El diagnòstic mitjançant la imatge mèdica s’ha convertit en una eina fonamental en la pràctica clínica, permet entre altres coses, reconstruir a partir d’un conjunt d’imatges 2D, obtingudes a partir d’aparells de captació, qualsevol part de l’organisme d’un pacient i representar-lo en un model 3D. Sobre aquest model 3D poden realitzar-se diferents operacions que faciliten el diagnòstic i la presa de decisions als especialistes. El projecte que es presenta forma part del desenvolupament de la plataforma informàtica de visualització i tractament de dades mèdiques, anomenada Starviewer, que desenvolupen conjuntament el laboratori de Gràfics i Imatge (GiLab) de la Universitat de Girona i l’ Institut de Diagnòstic per la Imatge (IDI) de l’Hospital Josep Trueta de Girona. En particular, en aquest projecte es centra en el diagnòstic del càncer colorectal i el desenvolupament de mètodes i tècniques de suport al seu diagnòstic. Els dos punts claus en el tractament d’aqueta patologia són: la detecció de les lesions I l’estudi de l’evolució d’aquestes lesions, una vegada s’ha iniciat el tractament tumoral. L’objectiu principal d’aquest projecte és implementar i integrar en la plataforma Starviewer les tècniques de visualització i processament de dades necessàries per donar suport als especialistes en el diagnòstic de les lesions del colon. Donada la dificultat en el processament de les dades reals del budell ens proposem: dissenyar i implementar un sistema per crear models sintètics del budell; estudiar, implementar i avaluar les tècniques de processament d’imatge que calen per segmentar lesions de budell; dissenyar i implementar un sistema d’exploració del budell iintegrar de tots els mòduls implementats en la plataforma starviewer
Resumo:
L’objectiu d’aquest projecte és integrar a la plataforma Starviewer ( plataforma informàtica de processament i visualització d’imatges mèdiques creada fruit de la col•laboració del Laboratori de Gràfics i Imatge (GILab) de la Universitat de Girona i l’Institut de Diagnòstic per la Imatge (IDI) de l’hospital Dr. Josep Trueta de Girona) per donar suport al diagnòstic un entorn de suport a la inserció de pròtesis, que permeti automatitzar al màxim les operacions que actualment es realitzen de forma manual. Hem de tenir en compte que, tot i que, la imatge més usada pel radiòleg es la radiografia (Rx) també treballa amb tomografia computada (TAC). El TAC dona una visió 3D de l’organisme, mentre que la Rx és 2D
Resumo:
L’objectiu d’aquest projecte es dissenyar i implementar un entorn de suport al diagnòstic dels aneurismes. Aquest entorn s’haurà d’integrar en la plataforma Starviewer. La plataforma Starviewer és un entorn de processament i visualització de dades mèdiques desenvolupat conjuntament entre el Laboratori de Gràfics i Imatge de la UdG i l’ Institut de Diagnòstic per la Imatge de l’Hospital Josep Trueta de Girona. Aquesta plataforma ofereix les funcionalitats bàsiques per diagnosticar a partir d’imatges. Tot i les funcionalitats de la plataforma, en la versió actual no es suporta el processament avançat d’imatge d’angiografia. En aquest projecte ens proposem ampliar aquesta plataforma integrant els mòduls necessaris que permetin el processament d’angiografies usades en el diagnòstic dels aneurismes
Resumo:
A recent trend in digital mammography is computer-aided diagnosis systems, which are computerised tools designed to assist radiologists. Most of these systems are used for the automatic detection of abnormalities. However, recent studies have shown that their sensitivity is significantly decreased as the density of the breast increases. This dependence is method specific. In this paper we propose a new approach to the classification of mammographic images according to their breast parenchymal density. Our classification uses information extracted from segmentation results and is based on the underlying breast tissue texture. Classification performance was based on a large set of digitised mammograms. Evaluation involves different classifiers and uses a leave-one-out methodology. Results demonstrate the feasibility of estimating breast density using image processing and analysis techniques