14 resultados para Ceriantharia
Resumo:
This key includes 60 species of sea anemones and their relatives in the orders Actiniaria, Corallimorpharia, Ceriantharia, and Zoanthidea. Species from the intertidal zone, continental slope, and deep sea are included over a geographic range from Atlantic Canada to approximately South Carolina. In addition to the illustrated key itself, characteristics of each species are summarized in tabular form, including morphology, distribution, and types and sizes of cnidae. Ecological and taxonomic information on each species are also included in an annotated species list. (PDF file contains 76 pages.)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The use of molecular data for species delimitation in Anthozoa is still a very delicate issue. This is probably due to the low genetic variation found among the molecular markers (primarily mitochondrial) commonly used for Anthozoa. Ceriantharia is an anthozoan group that has not been tested for genetic divergence at the species level. Recently, all three Atlantic species described for the genus Isarachnanthus of Atlantic Ocean, were deemed synonyms based on morphological simmilarities of only one species: Isarachnanthus maderensis. Here, we aimed to verify whether genetic relationships (using COI, 16S, ITS1 and ITS2 molecular markers) confirmed morphological affinities among members of Isarachnanthus from different regions across the Atlantic Ocean. Results from four DNA markers were completely congruent and revealed that two different species exist in the Atlantic Ocean. The low identification success and substantial overlap between intra and interspecific COI distances render the Anthozoa unsuitable for DNA barcoding, which is not true for Ceriantharia. In addition, genetic divergence within and between Ceriantharia species is more similar to that found in Medusozoa (Hydrozoa and Scyphozoa) than Anthozoa and Porifera that have divergence rates similar to typical metazoans. The two genetic species could also be separated based on micromorphological characteristics of their cnidomes. Using a specimen of Isarachnanthus bandanensis from Pacific Ocean as an outgroup, it was possible to estimate the minimum date of divergence between the clades. The cladogenesis event that formed the species of the Atlantic Ocean is estimated to have occured around 8.5 million years ago (Miocene) and several possible speciation scenarios are discussed.
Resumo:
A new species of cheilostome bryozoan, Fenestrulina commensalis n. sp., was collected in December 2008 by scuba at 5–10 meters depth at Guaibura Beach, Guarapari, Espírito Santo state, southeastern Brazil. The specimen was found associated with tubes of the cerianthid Pachycerianthus sp., representing the first commensal association between a bryozoan and a tube-dwelling anemone. Fenestrulina commensalis n. sp. is the third species of the genus found in Brazilian waters; it is distinguished from other Atlantic species of Fenestrulina by its small angular orificial condyles, a single oral spine and basal anchoring rhizoids arising from abfrontal pore chambers. Morphological adaptations to encrust the tubes of cerianthids include anchoring rootlets and weakly contiguous zooids. These morphological features allow the colony the flexibility to grow around the tube and feed relatively undisturbed by silt and detritus, being raised well above the softsediment substratum in which the tube-anemone grows.
Resumo:
The conservation of emblematic threatened species is in highlight nowadays. Interestingly, few invertebrate groups attract scientific attention on this issue while they constitute the vast majority of animal biodiversity. Nevertheless, many invertebrate species are nowadays at risk of extinction. This means that plenty of species are currently disappearing out of sight. During a survey in the southwestern Atlantic Ocean tubes of an endangered species of cerianthid were sampled. This study reports for the very first time the occurrence of the species Phoronis australis in southwestern Atlantic waters and the association of phoronids with the genus Ceriantheomorphe. This raises questions on mutual extinction risks for symbiotic species and also on the criteria for their inclusion on Red Lists.
Resumo:
Based on 16 specimens from the Southwestern Atlantic coast (Argentina and Brazil) we reinterpret the taxonomic position of Tessera gemmaria Goy, 1979, a stauromedusa considered as incertae sedis for a long time. Using external morphology, histological preparations and molecular data (16S and COI) we conclude that T. gemmaria is an early stage of a cerinula, the long-lived planktonic larval stage of the Ceriantharia (Anthozoa).
Resumo:
The Long-Term Ecological Research (LTER) observatory HAUSGARTEN, in the eastern Fram Strait, provides us the valuable ability to study the composition of benthic megafaunal communities through the analysis of seafloor photographs. This, in combination with extensive sampling campaigns, which have yielded a unique data set on faunal, bacterial, biogeochemical and geological properties, as well as on hydrography and sedimentation patterns, allows us to address the question of why variations in megafaunal community structure and species distribution exist within regional (60-110 km) and local (<4 km) scales. Here, we present first results from the latitudinal HAUSGARTEN gradient, consisting of three different stations (N3, HG-IV, S3) between 78°30'N and 79°45'N (2351 - 2788 m depth), obtained via the analysis of images acquired by a towed camera (OFOS - Ocean Floor Observation System) in 2011. We assess variability in megafaunal densities, species composition and diversity as well as biotic and biogenic habitat features, which may cause the patterns observed. While there were significant regional-scale differences in megafaunal composition and densities between the stations (N3 = 26.74 ± 0.63; HG-IV = 11.21 ± 0.25; S3 = 18.34 ± 0.39 individuals/m**2), significant local differences were only found at HG-IV. Regional-scale variations may be due to the significant differences in ice coverage at each station as well as the different quantities of protein available, whereas local-scale differences at HG-IV may be a result of variation in bottom topography or factors not yet identified.
Resumo:
The assemblages inhabiting the continental shelf around Antarctica are known to be very patchy, in large part due to deep iceberg impacts. The present study shows that richness and abundance of much deeper benthos, at slope and abyssal depths, also vary greatly in the Southern and South Atlantic oceans. On the ANDEEP III expedition, we deployed 16 Agassiz trawls to sample the zoobenthos at depths from 1055 to 4930 m across the northern Weddell Sea and two South Atlantic basins. A total of 5933 specimens, belonging to 44 higher taxonomic groups, were collected. Overall the most frequent taxa were Ophiuroidea, Bivalvia, Polychaeta and Asteroidea, and the most abundant taxa were Malacostraca, Polychaeta and Bivalvia. Species richness per station varied from 6 to 148. The taxonomic composition of assemblages, based on relative taxon richness, varied considerably between sites but showed no relation to depth. The former three most abundant taxa accounted for 10-30% each of all taxa present. Standardised abundances based on trawl catches varied between 1 and 252 individuals per 1000 m2. Abundance significantly decreased with increasing depth, and assemblages showed high patchiness in their distribution. Cluster analysis based on relative abundance showed changes of community structure that were not linked to depth, area, sediment grain size or temperature. Generally abundances of zoobenthos in the abyssal Weddell Sea are lower than shelf abundances by several orders of magnitude.