14 resultados para Cerate


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solid electrolytes, BaCe(0.8)Ln(0.2)O(2.9) (Ln: Gd, Sm, Eu), were prepared by the sol-gel method. XRD indicated that a pure orthorhombic phase was formed at 900 degrees C. The synthesis temperature by the sol-gel method was about 600 degrees C: lower than the high temperature solid phase reaction method. The electrical conductivity and impedance spectra were measured and the conduction mechanism was studied. The grain-boundary resistance of the solid electrolyte could be reduced or eliminated by the sol-gel method. The conductivity of BaCe0.8Gd0.2O2.9 is 7.87 x 10(-2) S.cm(-1) at 800 degrees C. The open-circuit voltage of hydrogen-oxygen fuel cell using BaCe0.8Gd0.2O2.9 as electrolyte was near to 1 V and its maximum power density was 30 mW.cm(-2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Doped barium cerate is a promising solid electrolyte for intermediate temperature fuel cells as a protonic conductor. However, it is difficult to sinter it to high density at a reasonable temperature. Moreover, it presents a high grain boundary resistivity at intermediate temperatures. Flash grain welding was applied to compacted samples, starting from a temperature of 910 degrees C and applying, for a short time, an ac electric polarization of 40 V, 1000 Hz. At that frequency, the resulting current flows through the grain boundaries promoting a welding via a local Joule heating. A large decrease of the grain boundary resistivity was observed by impedance spectroscopy. Scanning electron microscopy observations of polished and etched surfaces revealed highly sintered regions. Attempts were also made to combine flash grain welding with conventional sintering. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It was found that ceric oxalate is an intermediate product in the oxidation of oxalic acid by ammonium hexanitrato cerate in solvents such as acetonitrile, and a mixture of acetonitrile and glacial acetic acid. Conditions for the formation of ceric oxalate and its decomposition into carbon dioxide and cerous oxalate have been studied. An analytical method for the estimation of oxalic acid in non-aqueous media has been evolved based on this reaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reaction between ascorbic acid and ammonium hexa nitrato cerate was studied potentiometrically in the mixed solvent glacial acetic acid acetonitrile medium. It was found that one mole of ascorbic acid consumes four equivalents of cerate in non-aqueous medium. This reaction can be made use of to estimate potentiometrically ascorbic acid with ammonium nitrato cerate in non-aqueous media, using either glass or antimony as reference electrode and platinum as indicator electrode.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Potassium iodide and hydroquinone can be estimated potentiometrically in nonaqueous medium using ammonium nitrato cerate as oxidant. A platinum indicator electrode coupled with either a glass electrode or an antimony electrode as reference electrode, can be used in nonaqueous medium satisfactorily, for following the potentiometric titration. Direct potentiometric titration of xanthate with ammonium nitrato cerate in nonaqueous medium yields slightly lower values than the actual values in presence of platinum indicator electrode.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of Dy3+ (0.5-9 mol%) and Li+ (0.5-3 mol%) co-doped strontium cerate (Sr2CeO4) nanopowders are synthesized by low temperature solution combustion synthesis. The effects of Li+ doping on the crystal structure, chemical composition, surface morphology and photoluminescence properties are investigated. The X-ray diffraction results confirm that all the samples calcined at 900 degrees C show the pure orthorhombic (Pbam) phase. Scanning electron microscopy analysis reveals that the particles adopt irregular morphology and the porous nature of the product. Room temperature photoluminescence results indicate that the phosphor can be effectively excited by near UV radiation (290 to 390 nm) which results in the blue (484 nm) and yellow (575 nm) emission. Furthermore, PL emission intensity and wavelength are highly dependent on the concentration of Li+ doping. The emission intensity is enhanced by similar to 3 fold with Li+ doping. White light is achieved by merely varying dopant concentration. The colour purity of the phosphor is confirmed by CIE co-ordinates (x = 0.298, y = 0.360). The study demonstrates a simple and efficient method for the synthesis of novel nanophosphors with enhanced white emission.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BaCe1-xYxO3-δ (BCY) and BaCe0.8-yZryY0.2O3-δ (BCZY) compounds were synthesised via an aqueous sol-gel method and two different calcination processes were tested for BCZY synthesis. The highest hydration capacity was recorded for the compound that contained the highest Y-doping level (x=0.2). Further substitution of Ce4+ by Zr4+ enhanced the chemical stability especially for y≥0.2, although decreased proton conductivity. However, BaCe0.6-0.2Zr0.2Y0.2O2.9 (BCZ20Y20) which presented adequate water uptake and high chemical stability in presence of CO2, was found to be the best candidate compound to be used in applications such as electrocatalytic CO2 hydrogenation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dense ceramics with mixed protonic-electronic conductivity are of considerable interest for the separation and purification of hydrogen and as electrochemical reactors. In this work, the hydrogen permeability of a Sr0.97Ce0.9Yb0.1O3 - δ (SCYb) membrane with a porous Pt catalytic layer on the hydrogen feed-exposed side has been studied over the temperature range 500-804 °C employing Ar as the permeate sweep gas. A SiO2-B2O3-BaO-MgO-ZnO-based glass-ceramic sealant was successfully employed to seal the membrane to the dual-chamber reactor. After 14 h of exposure to 10% H2:90% N2 at 804 °C, the H2 flux reached a maximum of 33 nmol cm- 2 s- 1, over an order of magnitude higher than that obtained on membranes of similar thickness without surface modification. The permeation rate then decreased slowly and moderately on annealing at 804 °C over a further 130 h. Thereafter, the flux was both reproducible and stable on thermal cycling in the range 600-804 °C. The results indicate an important role of superficial activation processes in the flux rate and suggest that hydrogen fluxes can be further optimised in cerate-based perovskites. © 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel approach to electrochemical modification of catalytic activity using a wireless configuration has been undertaken. This paper presents preliminary results on the modification of a platinum catalyst film supported on a pellet of Sr0.97Ce0.9Yb0.1O3-δ (SCYb), considered to be a mixed protonic-electronic conductor under reducing conditions. The wireless configuration utilises the mixed ionic and electronic conductivity of the supporting membrane to supply an ionic promoting species to the catalyst surface. Control of the flux of this species is achieved by adjusting the effective hydrogen chemical potential difference across the membrane in a dual-chamber reactor with one chamber acting as the "reaction side" and the other as the "sweep side". The reaction rate can be promoted by up to a factor of 1.6, for temperatures around 500 °C and low reactant concentrations, when hydrogen is introduced on the sweep side of the membrane reactor. The use of helium, moist helium and oxygen in helium as sweep gases did not modify the reaction rate. © 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optimization of the major properties of anodes based on proton conductors, such as microstructure, conductivity and chemical stability, is yet to be achieved. In this study we investigated the influence of indium on the chemical stability, microstructural and electrical characteristics of proton conducting NiO-BaCe0.9-xInxY0.1O 3-δ (NiO-BCIYx) anodes. Four compositions of cermet anode substrates NiO-BCIYx were prepared using the method of evaporation and decomposition of solutions and suspensions (EDSS). Sintered anode substrates were reduced and their microstructural and electrical properties were examined before and after reduction as a function of the amount of indium. Anode substrates tested on chemical stability in the CO2 atmosphere showed high stability compared to anode substrates based on commonly used doped barium cerates. Microstructural properties of the anode pellets before and after testing in CO2 were investigated using X-ray diffraction analysis. Impedance spectroscopy measurements were used for evaluation of electrical properties of the anode pellets and the conductivity values of reduced anodes of more than 14 S cm-1 at 600 °C confirmed percolations through Ni particles. Under fuel cell operating conditions, the cell with a Ni-BCIY20 anode achieved the highest performance, demonstrating a peak power density 223 mW/cm2 at 700 °C confirming the functionality of Ni-BCIY anodes.© 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Barium Cerate (BaCeO3) is perovskite type structure of ABO3, wherein A and B are metal cations. These materials, or doped, have been studied by having characteristics that make them promising for the application in fuel cells solid oxide, hydrogen and oxygen permeation, as catalysts, etc .. However, as the ceramic materials mixed conductivity have been produced by different synthesis methods, some conditions directly influence the final properties, one of the most important doping Site B, which may have direct influence on the crystallite size, which in turn directly influences their catalytic activity. In this study, perovskite-type (BaCexO3) had cerium gradually replaced by praseodymium to obtain ternary type materials BaCexPr1-xO3 and BaPrO3 binaries. These materials were synthesized by EDTA/Citrate complexing method and the material characterized via XRD, SEM and BET for the identification of their structure, morphology and surface area. Moreover were performed on all materials, catalytic test in a fixed bed reactor for the identification of that person responsible for complete conversion of CO to CO2 at low operating temperature, which step can be used as the subsequent production of synthesis gas (CO + H2) from methane oxidation. In the present work the crystalline phase having the orthorhombic structure was obtained for all compositions, with a morphology consisting of agglomerated particles being more pronounced with increasing praseodymium in the crystal structure. The average crystal size was between 100 nm and 142,2 nm. The surface areas were 2,62 m²g-1 for the BaCeO3 composition, 3,03 m²g-1 to BaCe0,5Pr0,5O3 composition and 2,37 m²g-1 to BaPrO3 composition. Regarding the catalytic tests, we can conclude that the optimal flow reactor operation was 50 ml / min and the composition regarding the maximum rate of conversion to the lowest temperature was BaCeO3 to 400° C. Meanwhile, there was found that the partially replaced by praseodymium, cerium, there was a decrease in the catalytic activity of the material.