917 resultados para Ceramic foam


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Procurement of fresh tissue of prostate cancer is critical for biobanking and generation of xenograft models as an important preclinical step towards new therapeutic strategies in advanced prostate cancer. However, handling of fresh radical prostatectomy specimens has been notoriously challenging given the distinctive physical properties of prostate tissue and the difficulty to identify cancer foci on gross examination. Here, we have developed a novel approach using ceramic foam plates for processing freshly cut whole mount sections from radical prostatectomy specimens without compromising further diagnostic assessment. Forty-nine radical prostatectomy specimens were processed and sectioned from the apex to the base in whole mount slices. Putative carcinoma foci were morphologically verified by frozen section analysis. The fresh whole mount slices were then laid between two ceramic foam plates and fixed overnight. To test tissue preservation after this procedure, formalin-fixed and paraffin-embedded whole mount sections were stained with hematoxylin and eosin (H&E) and analyzed by immunohistochemistry, fluorescence, and silver in situ hybridization (FISH and SISH, respectively). There were no morphological artifacts on H&E stained whole mount sections from slices that had been fixed between two plates of ceramic foam, and the histological architecture was fully retained. The quality of immunohistochemistry, FISH, and SISH was excellent. Fixing whole mount tissue slices between ceramic foam plates after frozen section examination is an excellent method for processing fresh radical prostatectomy specimens, allowing for a precise identification and collection of fresh tumor tissue without compromising further diagnostic analysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The unique properties of ceramic foams enable their use in a variety of applications. This work investigated the effects of different parameters on the production of zirconia ceramic foam using the sol-gel process associated with liquid foam templates. Evaluation was made of the influence of the thermal treatment temperature on the porous and crystalline characteristics of foams manufactured using different amounts of sodium dodecylsulfate (SDS) surfactant. A maximum pore volume, with high porosity (94%) and a bimodal pore size distribution, was observed for the ceramic foam produced with 10% SDS. Macropores, with an average size of around 30 μm, were obtained irrespective of the SDS amount, while the average size of the supermesopores increased systematically as the SDS amount was increased up to 10%, after which it decreased. X-ray diffraction analyses showed that the sample treated at 500 °C was amorphous, while crystallization into a tetragonal metastable phase occurred at 600 °C due to the presence of sulfate groups in the zirconia structure. At 800 and 1000 °C the monoclinic phase was observed, which is thermodynamically stable at these temperatures. © 2013 by the authors; licensee MDPI, Basel, Switzerland.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Brazil has vast amounts of hydric resources, whose quality has been deteriorating due to pollutant dumping. Household waste disposal is one of the main sources of water pollution, stimulating bacteria proliferation and introducing microorganisms, including those from fecal matter. Conventional water disinfection methods are a solution, but on the downside, they lead to the formation byproducts hazardous to human health. In this study, aiming to develop bactericidal filters for the disinfection of drinking water; silver nanoparticles were deposited on alumina foams through three routes: sputtering DC, dip coating and in situ chemical reduction of silver nitrate. The depositions were characterized through X-ray diffraction, scanning electron microscopy and EDS element mapping. The influence of the depositions on permeability and mechanical properties of the ceramic foams was assessed and, in sequence, a preliminary antibacterial efficiency analysis was carried out. Characterization results indicate that the chemical reduction routes were efficient in depositing homogeneously distributed silver particles and that the concentration of the metallic precursor salt affects size and morphology of the particles. The antibacterial efficiency analysis indicates that the chemical reduction filters have potential for water disinfection

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ceramics with porous cellular structure, called ceramic foams, have a potential use in several applications, such as: thermal insulation, catalyst supports, filters, and others. Among these techniques to obtain porous ceramics the replication method is an important process. This method consists of impregnation of a sponge (usually polymer) with ceramic slurry, followed by a heat treatment, which will happen the decomposition of organic material and sintering the ceramic material, resulting in a ceramic structure which is a replica of impregnated sponge. Knowledge of the mechanical properties of these ceramics is important for these materials can be used commercially. Gibson and Ashby developed a mathematical model to describe the mechanical behavior of cellular solids. This model wasn´t for describing the ceramics behavior produced by the replica method, because it doesn´t consider the defects from this type of processing. In this study were researched mechanical behavior of porous alumina ceramics obtained by the replica method and proposed modifications to the model of Gibson and Ashby to accommodate this material. The polymer sponge used in processing was characterized by thermogravimetric analysis and scanning electron microscopy. The materials obtained after sintering were characterized by mechanical strength tests on 4-point bending and compression, density and porosity and by scanning electron microscopy. From these results it was evaluated the mechanical strength behavior compared to Gibson and Ashby model for solid cellular structure and was proposed a correction of this model through a factor related to struts integrity degree, which consider fissures present in the structure of these materials besides defects geometry within the struts

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we describe the production of zirconia-based foams by a novel thermostimulated sol-gel route, that employs the foaming of colloidal suspensions prior to the sol-gel transition promoted by small increase of temperature (congruent to3 degreesC). This method produces gelled bodies having porosity >70% in the wet stage, and can be used to produce complex-shaped components. The effect of a foaming agent (Freon11 or CCl3F) and surfactant content on the formation and stability of the foams was analyzed. The rheologic measurements demonstrate that by increasing the surfactant concentration, the gelation time decreases increasing foam stability. As the surfactant concentration and quantity of foaming agent increase, the density decreases and the porosity increases. Hg porosimetry results show that the dry foam presents a bimodal pore size distribution. The family of sub-micrometer pores was attributed to the formation of a microemulsion between Freon11 and water. Scanning electron microscopy analysis shows that the foam structure consists of a three-dimensional network of spherical pores, which may be open and interconnected or closed, at larger or smaller porosities, respectively. Finally these results show that the thermostimulated sol-gel transition provides a potential route for ceramic foam manufacture. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, we investigate the correlations between structural and rheological properties of emulsified aqueous sol and the porous microstructure of monolithic zirconia foams, manufactured by the integrative combination of the sol-gel and emulsification processes. Macroporous zirconia ceramics prepared using different amounts of decahydronaphthalene, as oil phase, are compared in terms of the emulsion microstructure and ceramic porosity. A combination of electrical conductivity, oil droplet diameter, and rheological measurements was used to highlight the key effect of the dynamic structural properties of the emulsion on the porosity of the ceramic zirconia foam. The minimization of drying shrinkage by appropriate sol-gel mineralization of the oil droplet wall enabled versatile and easy tuning of the ceramic foam microstructure, by fine adjustment of the emulsion characteristics. The foam with the highest porosity (90%) and the lowest bulk density (0.40 g cm-3) was prepared from emulsion with 80 wt% of decahydronaphthalene, which also showed a bicontinuous structure and elevated flow consistency. © The Royal Society of Chemistry 2013.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Brazil has vast amounts of hydric resources, whose quality has been deteriorating due to pollutant dumping. Household waste disposal is one of the main sources of water pollution, stimulating bacteria proliferation and introducing microorganisms, including those from fecal matter. Conventional water disinfection methods are a solution, but on the downside, they lead to the formation byproducts hazardous to human health. In this study, aiming to develop bactericidal filters for the disinfection of drinking water; silver nanoparticles were deposited on alumina foams through three routes: sputtering DC, dip coating and in situ chemical reduction of silver nitrate. The depositions were characterized through X-ray diffraction, scanning electron microscopy and EDS element mapping. The influence of the depositions on permeability and mechanical properties of the ceramic foams was assessed and, in sequence, a preliminary antibacterial efficiency analysis was carried out. Characterization results indicate that the chemical reduction routes were efficient in depositing homogeneously distributed silver particles and that the concentration of the metallic precursor salt affects size and morphology of the particles. The antibacterial efficiency analysis indicates that the chemical reduction filters have potential for water disinfection