926 resultados para Central Asia
Resumo:
This Technical Paper is a basic guide to carp pond polyculture practicable in the Central and Eastern Europe (CEE) and the Caucasus and Central Asia (CCA) countries. It provides an overview on the guiding principles, aspects and tasks, and presents the most applicable production techniques and patterns of carp polyculture. For further reading and more in-depth information on the suggested techniques and technologies, it also includes a list of relevant FAO publications. It is expected that this publication will help identify resources and contribute to the successful planning and realization of fish production by those fish pond owners and operators who need to strengthen and improve their knowledge on the subject.
Resumo:
The new class, the Tamaricetea arceuthoidis, is described covering riparian and intermittent shrubby vegetation of the Irano-Turanian Region in the southwestern and Central Asia and the Lower Volga valley. The dominating species are species of the genus Tamarix that refer high water table in arid and semi-arid habitats with high to moderate salinity. This new class is an ecological analogon of the Nerio-Tamaricetea occurring in the Mediterranean Basin.
Resumo:
In this study, we systematically compare a wide range of observational and numerical precipitation datasets for Central Asia. Data considered include two re-analyses, three datasets based on direct observations, and the output of a regional climate model simulation driven by a global re-analysis. These are validated and intercompared with respect to their ability to represent the Central Asian precipitation climate. In each of the datasets, we consider the mean spatial distribution and the seasonal cycle of precipitation, the amplitude of interannual variability, the representation of individual yearly anomalies, the precipitation sensitivity (i.e. the response to wet and dry conditions), and the temporal homogeneity of precipitation. Additionally, we carried out part of these analyses for datasets available in real time. The mutual agreement between the observations is used as an indication of how far these data can be used for validating precipitation data from other sources. In particular, we show that the observations usually agree qualitatively on anomalies in individual years while it is not always possible to use them for the quantitative validation of the amplitude of interannual variability. The regional climate model is capable of improving the spatial distribution of precipitation. At the same time, it strongly underestimates summer precipitation and its variability, while interannual variations are well represented during the other seasons, in particular in the Central Asian mountains during winter and spring
Resumo:
A statistical–dynamical downscaling (SDD) approach is applied to determine present day and future high-resolution rainfall distributions in the catchment of the river Aksu at the southern slopes of the Tienshan Mountains, Central Asia. First, a circulation weather type (CWT) classification is employed to define typical lower atmospheric flow regimes from ERA-40 reanalysis data. Selected representatives of each CWT are dynamically downscaled with the regional climate model COSMO-CLM 4.8 at a horizontal grid resolution of 0.0625°, using the ERA-40 reanalysis data as boundary conditions. Finally, the simulated representatives are recombined to obtain a high-resolution rainfall climatology for present day climate. The methodology is also applied to ensemble simulations of three different scenarios of the global climate model ECHAM5/MPI-OM1 to derive projections of rainfall changes until 2100. Comparisons of downscaled seasonal and annual rainfall with observational data suggest that the statistical–dynamical approach is appropriate to capture the observed present-day precipitation climatology over the low lands and the first elevations of the Tienshan Mountains. On the other hand, a strong bias is found at higher altitudes, where precipitation is clearly underestimated by SDD. The application of SDD to the ECHAM5/MPI-OM1 ensemble reveals that precipitation changes by the end of the 21st century depend on the season. While for autumn an increase of seasonal precipitation is found for all simulations, a decrease in precipitation is obtained during winter for most parts of the Aksu catchment. The spread between different ECHAM5/MPI-OM1 ensemble members is strongest in spring, where trends of opposite sign are found. The largest changes in rainfall are simulated for the summer season, which also shows the most pronounced spatial heterogeneity. Most ECHAM5/MPI-OM1 realizations indicate a decrease of annual precipitation over large parts of the Tienshan, and an increase restricted to the southeast of the study area. These results provide a good basis for downscaling present-day and future rainfall distributions for hydrological purposes.