990 resultados para Cement industry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cement industry ranks 2nd in energy consumption among the industries in India. It is one of the major emitter of CO2, due to combustion of fossil fuel and calcination process. As the huge amount of CO2 emissions cause severe environment problems, the efficient and effective utilization of energy is a major concern in Indian cement industry. The main objective of the research work is to assess the energy cosumption and energy conservation of the Indian cement industry and to predict future trends in cement production and reduction of CO2 emissions. In order to achieve this objective, a detailed energy and exergy analysis of a typical cement plant in Kerala was carried out. The data on fuel usage, electricity consumption, amount of clinker and cement production were also collected from a few selected cement industries in India for the period 2001 - 2010 and the CO2 emissions were estimated. A complete decomposition method was used for the analysis of change in CO2 emissions during the period 2001 - 2010 by categorising the cement industries according to the specific thermal energy consumption. A basic forecasting model for the cement production trend was developed by using the system dynamic approach and the model was validated with the data collected from the selected cement industries. The cement production and CO2 emissions from the industries were also predicted with the base year as 2010. The sensitivity analysis of the forecasting model was conducted and found satisfactory. The model was then modified for the total cement production in India to predict the cement production and CO2 emissions for the next 21 years under three different scenarios. The parmeters that influence CO2 emissions like population and GDP growth rate, demand of cement and its production, clinker consumption and energy utilization are incorporated in these scenarios. The existing growth rate of the population and cement production in the year 2010 were used in the baseline scenario. In the scenario-1 (S1) the growth rate of population was assumed to be gradually decreasing and finally reach zero by the year 2030, while in scenario-2 (S2) a faster decline in the growth rate was assumed such that zero growth rate is achieved in the year 2020. The mitigation strategiesfor the reduction of CO2 emissions from the cement production were identified and analyzed in the energy management scenarioThe energy and exergy analysis of the raw mill of the cement plant revealed that the exergy utilization was worse than energy utilization. The energy analysis of the kiln system showed that around 38% of heat energy is wasted through exhaust gases of the preheater and cooler of the kiln sysetm. This could be recovered by the waste heat recovery system. A secondary insulation shell was also recommended for the kiln in the plant in order to prevent heat loss and enhance the efficiency of the plant. The decomposition analysis of the change in CO2 emissions during 2001- 2010 showed that the activity effect was the main factor for CO2 emissions for the cement industries since it is directly dependent on economic growth of the country. The forecasting model showed that 15.22% and 29.44% of CO2 emissions reduction can be achieved by the year 2030 in scenario- (S1) and scenario-2 (S2) respectively. In analysing the energy management scenario, it was assumed that 25% of electrical energy supply to the cement plants is replaced by renewable energy. The analysis revealed that the recovery of waste heat and the use of renewable energy could lead to decline in CO2 emissions 7.1% for baseline scenario, 10.9 % in scenario-1 (S1) and 11.16% in scenario-2 (S2) in 2030. The combined scenario considering population stabilization by the year 2020, 25% of contribution from renewable energy sources of the cement industry and 38% thermal energy from the waste heat streams shows that CO2 emissions from Indian cement industry could be reduced by nearly 37% in the year 2030. This would reduce a substantial level of greenhouse gas load to the environment. The cement industry will remain one of the critical sectors for India to meet its CO2 emissions reduction target. India’s cement production will continue to grow in the near future due to its GDP growth. The control of population, improvement in plant efficiency and use of renewable energy are the important options for the mitigation of CO2 emissions from Indian cement industries

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper demonstrates that when an industry faces potential entry and this threat of entry constrains pre-entry prices, cost and conduct are not identified from the comparative statics of equilibrium. In such a setting, the identifying assumption behind the well-established technique of relying on exogenous demand perturbations to empirically distinguish between alternative hypotheses of conduct is shown to fail. The Brazilian cement industry, where the threat of imports restrains market outcomes, provides an empirical illustration. In particular, pricecost margins estimated using this established technique are considerably biased downward, underestimating the degree of market power. A test of conduct is proposed, adapted to this constrained setting, which suggests that outcomes in the industry are collusive and characterised by market division.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The present paper shows preliminary results of an ongoing project which one of the goals is to investigate the viability of using waste FCC catalyst (wFCC), originated from Portuguese oil refinery, to produce low carbon blended cements. For this purpose, four blended cements were produced by substituting cement CEM I 42.5R up to 20% (w/w) by waste FCC catalyst. Initial and final setting times, consistency of standard paste, soundness and compressive strengths after 2, 7 and 28 days were measured. It was observed that the wFCC blended cements developed similar strength, at 28 days, compared to the reference cement, CEM I 42.5R. Moreover, cements with waste FCC catalyst incorporation up to 15% w/w meet European Standard EN 197-1 specifications for CEM II/A type cement, in the 42.5R strength class.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The present paper shows preliminary results of an ongoing project which one of the goals is to investigate the viability of using waste FCC catalyst (wFCC), originated from Portuguese oil refinery, to produce low carbon blended cements. For this purpose, four blended cements were produced by substituting cement CEM I 42.5R up to 20% (w/w) by waste FCC catalyst. Initial and final setting times, consistency of standard paste, soundness and compressive strengths after 2, 7 and 28 days were measured. It was observed that the wFCC blended cements developed similar strength, at 28 days, compared to the reference cement, CEM I 42.5R. Moreover, cements with waste FCC catalyst incorporation up to 15% w/w meet European Standard EN 197-1 specifications for CEM II/A type cement, in the 42.5R strength class.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The paper provides a descriptive analysis of the carbon management activities of the cement industry in Europe based on a study involving the four largest producers of cement in the world. Based on this analysis, the paper explores the relationship between managerial perception and strategy with particular focus on the impact of government regulation and competitive dynamics. The research is based on extensive documentary analysis and in-depth interviews with senior managers from the four companies who have been responsible for and/or involved in the development of climate change strategies. We find that whilst the cement industry has embraced climate change and the need for action, their remains much scope for action in their carbon management activities with current effort concentration on hedging practices and win-win efficiency programs. Managers perceive that inadequate and unfavourable regulatory structure is the key barrier against more action to achieve emission reduction within the industry. EU Cement companies are also shifting their CO2 emissions to less developed countries of the South.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Natural cement was patented in 1796 but it didn’t arrive in Spain until 1835. No one knows exactly where the production started in Spain, because it emerged independently at the same time in many places. Most of these outbreaks are concentrated in the north and northwest of Spain: Basque Country (Zumaya and Rezola) and Catalonia (San Celoní and San Juan de las Abadesas).Natural cement was extensively used to decorate historical buildings during the nineteenth and beginning of twentieth century in Madrid. It was the building material which realised the architects and builders dreams of mass-produced cast elements in a wide variety of styles. Its arrival replaced traditional materials that were used previously (lime, gypsum and hydraulic limes). However, its use was not extended in time, and soon it was replaced by the use of artificial Portland cements. During 20th century this building material disappeared from use. What remains is it’s memory, in thousands and thousands of “stone witnesses” in our cities. Final properties of the cement largely depend on raw materials used and its combustion temperature. However, it was characterised by an easily implementation on facade masonry, fast-setting (about 15 minutes), good resistance , an agreeable structural consistency and colour.This article aims to show first steps, evolution and decay of Natural Cement Industry in Spain and its application in Madrid.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study analyzes the management of air pollutant substance in Chinese industrial sectors from 1998 to 2009. Decomposition analysis applying the logarithmic mean divisia index is used to analyze changes in emissions of air pollutants with a focus on the following five factors: coal pollution intensity (CPI), end-of-pipe treatment (EOP), the energy mix (EM), productive efficiency change (EFF), and production scale changes (PSC). Three pollutants are the main focus of this study: sulfur dioxide (SO2), dust, and soot. The novelty of this paper is focusing on the impact of the elimination policy on air pollution management in China by type of industry using the scale merit effect for pollution abatement technology change. First, the increase in SO2 emissions from Chinese industrial sectors because of the increase in the production scale is demonstrated. However, the EOP equipment that induced this change and improvements in energy efficiency has prevented an increase in SO2 emissions that is commensurate with the increase in production. Second, soot emissions were successfully reduced and controlled in all industries except the steel industry between 1998 and 2009, even though the production scale expanded for these industries. This reduction was achieved through improvements in EOP technology and in energy efficiency. Dust emissions decreased by nearly 65% between 1998 and 2009 in the Chinese industrial sectors. This successful reduction in emissions was achieved by implementing EOP technology and pollution prevention activities during the production processes, especially in the cement industry. Finally, pollution prevention in the cement industry is shown to result from production technology development rather than scale merit. © 2013 Elsevier Ltd. All rights reserved.