959 resultados para Cement composites. Waste tire rubber. Limestone gravel. Deformation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Researches have shown that the introduction of rubber in concrete improves the features of its deformability, as well as contributes to environmental disposal of waste generated in the tire retreading process. Furthermore, there is a high availability of limestone within RN and CE country. Ignorance about this stone, does not allow its wide use as aggregate, leaving, this abundant supply idle. A composite of limestone gravel, with proportions of tire rubber waste which could be used as concrete would be an alternative to concrete for low applications. Therefore, this research aims to evaluate the characteristics of concrete containing limestone gravel and proportions of little aggregate replacement (sand) by tire rubber waste. To this goal, the material components of the concrete were characterized, concrete specimens with limestone gravel were made, from the dash 1.0: 2.5: 3.5, varying the water/cement ratio, and inserting a commercial plasticizer, without a proportion of residue, known as reference. From this, concrete with and without the presence of the additive in the same proportions were chosen, as well as these with the use of granite gravel, for being the most used. Selected the references, to these, replacements of little aggregate (sand) were added replaced by rubber waste from the tire retreading process, treated with 1M NaOH in proportions from 5.0 to 20.0 % by mass, cured and exposed to the semiarid environment. The results indicate the possibility of using limestone gravel in the concrete composition with workability correction using plasticizer. There was a decrease in the mechanical properties of the concrete with increments of waste rubber, but there is an improvement in toughness and deformability of the composite, which makes it interesting for the construction of non-structural concrete floors, as well as, the rubber waste delayed the hardening process, continuing to gain resistance after 28 days

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Researches have shown that the introduction of rubber in concrete improves the features of its deformability, as well as contributes to environmental disposal of waste generated in the tire retreading process. Furthermore, there is a high availability of limestone within RN and CE country. Ignorance about this stone, does not allow its wide use as aggregate, leaving, this abundant supply idle. A composite of limestone gravel, with proportions of tire rubber waste which could be used as concrete would be an alternative to concrete for low applications. Therefore, this research aims to evaluate the characteristics of concrete containing limestone gravel and proportions of little aggregate replacement (sand) by tire rubber waste. To this goal, the material components of the concrete were characterized, concrete specimens with limestone gravel were made, from the dash 1.0: 2.5: 3.5, varying the water/cement ratio, and inserting a commercial plasticizer, without a proportion of residue, known as reference. From this, concrete with and without the presence of the additive in the same proportions were chosen, as well as these with the use of granite gravel, for being the most used. Selected the references, to these, replacements of little aggregate (sand) were added replaced by rubber waste from the tire retreading process, treated with 1M NaOH in proportions from 5.0 to 20.0 % by mass, cured and exposed to the semiarid environment. The results indicate the possibility of using limestone gravel in the concrete composition with workability correction using plasticizer. There was a decrease in the mechanical properties of the concrete with increments of waste rubber, but there is an improvement in toughness and deformability of the composite, which makes it interesting for the construction of non-structural concrete floors, as well as, the rubber waste delayed the hardening process, continuing to gain resistance after 28 days

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research in the field of polymer modified cement has been carried out for the last 70 years or more. Polymers are mostly used to enhance durability and sustainability of cement concrete and in combination with classical construction materials a synergistic effect is obtained. In this work different polymers were added to Portland cement in various proportions and the mechanical and chemical resistance properties of the resultant composites when exposed to chemical environments were studied. Microstructural studies were also carried out to investigate the morphology of the composite and analyse the nature of interactions taking place between the cement and polymer phases. Though most polymers did not improve the compressive strength of the cement paste, it was found that they enhanced the resistance of the virgin cement paste to external chemical environments. The polymers seal the pores in the cement matrix and bridge the microcracks within the composite. Some of the polymers underwent chemical interactions with the cement paste thereby interfering in the hydration of cement. Polymers also decreased the leachability of water soluble components of virgin cement resulting in composites having improved durability. An attempt to correlate the structure of the polymers with the properties of the resultant composites is also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper shows preliminary results of an ongoing project which one of the goals is to investigate the viability of using waste FCC catalyst (wFCC), originated from Portuguese oil refinery, to produce low carbon blended cements. For this purpose, four blended cements were produced by substituting cement CEM I 42.5R up to 20% (w/w) by waste FCC catalyst. Initial and final setting times, consistency of standard paste, soundness and compressive strengths after 2, 7 and 28 days were measured. It was observed that the wFCC blended cements developed similar strength, at 28 days, compared to the reference cement, CEM I 42.5R. Moreover, cements with waste FCC catalyst incorporation up to 15% w/w meet European Standard EN 197-1 specifications for CEM II/A type cement, in the 42.5R strength class.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present paper shows preliminary results of an ongoing project which one of the goals is to investigate the viability of using waste FCC catalyst (wFCC), originated from Portuguese oil refinery, to produce low carbon blended cements. For this purpose, four blended cements were produced by substituting cement CEM I 42.5R up to 20% (w/w) by waste FCC catalyst. Initial and final setting times, consistency of standard paste, soundness and compressive strengths after 2, 7 and 28 days were measured. It was observed that the wFCC blended cements developed similar strength, at 28 days, compared to the reference cement, CEM I 42.5R. Moreover, cements with waste FCC catalyst incorporation up to 15% w/w meet European Standard EN 197-1 specifications for CEM II/A type cement, in the 42.5R strength class.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nickel–rubber nanocomposites were synthesized by incorporating ferromagnetic nickel nanoparticles in a natural rubber as well as neoprene rubber matrix. Complex dielectric permittivity and magnetic permeability of these composites were evaluated in the X-band microwave frequencies at room temperature using cavity perturbation technique. The dielectric loss in natural rubber is smaller compared to neoprene rubber. A steady increase in the dielectric permittivity is observed with increase in the content of nickel in both the composites. The magnetic permeability exhibits a steady decrease with increase in frequency and magnetic loss shows a relaxation at 8 GHz. The suitability of these composites as microwave absorbers is modeled based on the reflection loss which is dependant on the real and imaginary components of the complex dielectric permittivity and magnetic permeability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An experimental investigation of coir mesh reinforced mortar (CMRM) is conducted using nonwoven coir mesh matting. The main parameters in this study are the fiber volume fraction (number of mesh layers) and fiber surface treatment with a wetting agent. The composites are subjected to the four-point bending test. The short-term mechanical properties of CMRM are discussed. Scanning electron micrograph analysis is used to observe the fiber—matrix interfacial characteristics. The results indicate that the addition of coir mesh to mortar significantly improves the composite post-cracking flexural stress, toughness, ductility, and toughness index, compared to plain mortar materials. The Albatex © FFC wetting agent (2-ethylhexanol) can effectively improve water absorption of coir fiber and enhance the fiber—matrix bonding strength. These coir mesh reinforced composites may be useful in civil engineering applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reusing scrap tires has become a worldwide challenge, especially due to the great difficulty in finding ecologically and economically feasible ways to dispose of them. This has led to the creation of specific programs and legislation for reusing scrap tires. Research has shown that a certain percentage of scrap tire rubber can be added to asphalt compositions, and this has become a worldwide practice. This paper describes the properties of four asphalt compositions modified with scrap tire rubber (STR) prepared in the laboratory. These properties are then compared with those of asphalt modified with styrene butadiene styrene (SBS), a synthetic polymer and one of the most common modifiers, to verify the feasibility of using scrap tire rubber as a substitute for SBS. The scope of this study does not include an analysis of how STR affects end-of-life asphalt. The main findings indicate that STR is a potential substitute of SBS in paving material, and although it does not meet some of the standard specifications when compared with SBS, these issues can be overcome by proper care during storage and transportation. The substitution of SBS by STR also showed the potential for about 10% in expenditure savings. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes the preparation and characterization of composite materials obtained by the combination of natural rubber (NR) and carbon black (CB) in different percentages, aiming to improve their mechanical properties, processability, and electrical conductivity, aiming future applications as transducer in pressure sensors. The composites NR/CB were characterized through optical microscopy (OM), DC conductivity, thermal analysis using differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMA), thermogravimetry (TGA), and stress-strain test. The electrical conductivity varied between 10(-9) and 10 S m(-1), depending on the percentage of CB in the composite. Furthermore, a linear (and reversible) dependence of the conductivity on the applied pressure between 0 and 1.6 MPa was observed for the sample with containing 80 wt % of NR and 20% of CB. (C) 2007 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Composites of natural rubber and carbon black have attracted great interest due to their technological applications. In this work natural rubber (NR) and carbon black (CB) were compounded, aiming the development of composites with good mechanical properties, processability and electrical conductivity for use as pressure sensors. The electrical conductivity changes from 10(-11) to 10(-2) S.cm(-1) depending on the percentage of CB in the composite. It was also observed that the conductivity varies reversibly and linearly with the applied pressure. The latter demonstrates that this material can be used as pressure sensors.