969 resultados para Cellule pancréatique beta
Resumo:
Le diabète de type 2 (DT2) résulte d’une résistance à l’insuline par les tissus périphériques et par un défaut de sécrétion de l’insuline par les cellules β-pancréatiques. Au fil du temps, la compensation des îlots de cellules β pour la résistance à l’insuline échoue et entraine par conséquent une baisse progressive de la fonction des cellules β. Plusieurs facteurs peuvent contribuer à la compensation de la cellule β. Toutefois, la compréhension des mécanismes cellulaires et moléculaires sous-jacents à la compensation de la masse de la cellule β reste à ce jour inconnue. Le but de ce mémoire était d’identifier précisément quel mécanisme pouvait amener à la compensation de la cellule β en réponse à un excès de nutriments et plus précisément à l’augmentation de sa prolifération et de sa masse. Ainsi, avec l’augmentation de la résistance à l’insuline et des facteurs circulants chez les rats de six mois perfusés avec du glucose et de l’intralipide, l’hypothèse a été émise et confirmée lors de notre étude que le facteur de croissance HB-EGF active le récepteur de l’EGF et des voies de signalisations subséquentes telles que mTOR et FoxM1 impliquées dans la prolifération de la cellule β-pancréatique. Collectivement, ces résultats nous permettent de mieux comprendre les mécanismes moléculaires impliqués dans la compensation de la masse de la cellule β dans un état de résistance à l’insuline et peuvent servir de nouvelles approches thérapeutiques pour prévenir ou ralentir le développement du DT2.
Resumo:
Le cycle glycérolipides/acides gras libres (GL/FFA) est une voie métabolique clé qui relie le métabolisme du glucose et des acides gras et il est composé de deux processus métaboliques appelés lipogenèse et lipolyse. Le cycle GL/FFA, en particulier la lipolyse des triglycérides, génère diverses molécules de signalisation pour réguler la sécrétion d'insuline dans les cellules bêta pancréatiques et la thermogenèse non-frissonnante dans les adipocytes. Actuellement, les lipides provenant spécifiquement de la lipolyse impliqués dans ce processus sont mal connus. L’hydrolyse des triglycérides dans les cellules β est réalisée par les actions successives de la triglycéride lipase adipocytaire pour produire le diacylglycérol, ensuite par la lipase hormono-sensible pour produire le monoacylglycérol (MAG) et enfin par la MAG lipase (MAGL) qui relâche du glycerol et des acides gras. Dans les cellules bêta, la MAGL classique est très peu exprimée et cette étude a démontré que l’hydrolyse de MAG dans les cellules β est principalement réalisée par l'α/β-Hydrolase Domain-6 (ABHD6) nouvellement identifiée. L’inhibition d’ABHD6 par son inhibiteur spécifique WWL70, conduit à une accumulation des 1-MAG à longues chaines saturées à l'intérieur des cellules, accompagnée d’une augmentation de la sécrétion d'insuline stimulée par le glucose (GSIS). Baisser les niveaux de MAG en surexprimant ABHD6 dans la lignée cellulaire bêta INS832/13 réduit la GSIS, tandis qu’une augmentation des niveaux de MAG par le « knockdown » d’ABHD6 améliore la GSIS. L'exposition aiguë des monoacylglycérols exogènes stimule la sécrétion d'insuline de manière dose-dépendante et restaure la GSIS supprimée par un inhibiteur de lipases appelé orlistat. En outre, les souris avec une inactivation du gène ABHD6 dans tous les tissus (ABHD6-KO) et celles avec une inactivation du gène ABHD6 spécifiquement dans la cellule β présentent une GSIS stimulée, et leurs îlots montrent une augmentation de la production de monoacylglycérol et de la sécrétion d'insuline en réponse au glucose. L’inhibition d’ABHD6 chez les souris diabétiques (modèle induit par de faibles doses de streptozotocine) restaure la GSIS et améliore la tolérance au glucose. De plus, les résultats montrent que les MAGs non seulement améliorent la GSIS, mais potentialisent également la sécrétion d’insuline induite par les acides gras libres ainsi que la sécrétion d’insuline induite par divers agents et hormones, sans altération de l'oxydation et l'utilisation du glucose ainsi que l'oxydation des acides gras. Nous avons démontré que le MAG se lie à la protéine d’amorçage des vésicules appelée Munc13-1 et l’active, induisant ainsi l’exocytose de l'insuline. Sur la base de ces observations, nous proposons que le 1-MAG à chaines saturées agit comme facteur de couplage métabolique pour réguler la sécrétion d'insuline et que ABHD6 est un modulateur négatif de la sécrétion d'insuline. En plus de son rôle dans les cellules bêta, ABHD6 est également fortement exprimé dans les adipocytes et son niveau est augmenté avec l'obésité. Les souris dépourvues globalement d’ABHD6 et nourris avec une diète riche en gras (HFD) montrent une faible diminution de la prise alimentaire, une diminution du gain de poids corporel et de la glycémie à jeun et une amélioration de la tolérance au glucose et de la sensibilité à l'insuline et ont une activité locomotrice accrue. En outre, les souris ABHD6-KO affichent une augmentation de la dépense énergétique et de la thermogenèse induite par le froid. En conformité avec ceci, ces souris présentent des niveaux élevés d’UCP1 dans les adipocytes blancs et bruns, indiquant le brunissement des adipocytes blancs. Le phénotype de brunissement est reproduit dans les souris soit en les traitant de manière chronique avec WWL70 (inhibiteur d’ABHD6) ou des oligonucléotides anti-sense ciblant l’ABHD6. Les tissus adipeux blanc et brun isolés de souris ABHD6-KO montrent des niveaux très élevés de 1-MAG, mais pas de 2-MAG. L'augmentation des niveaux de MAG soit par administration exogène in vitro de 1-MAG ou par inhibition ou délétion génétique d’ABHD6 provoque le brunissement des adipocytes blancs. Une autre évidence indique que les 1-MAGs sont capables de transactiver PPARα et PPARγ et que l'effet de brunissement induit par WWL70 ou le MAG exogène est aboli par les antagonistes de PPARα et PPARγ. L’administration in vivo de l’antagoniste de PPARα GW6471 à des souris ABHD6-KO inverse partiellement les effets causés par l’inactivation du gène ABHD6 sur le gain de poids corporel, et abolit l’augmentation de la thermogenèse, le brunissement du tissu adipeux blanc et l'oxydation des acides gras dans le tissu adipeux brun. L’ensemble de ces observations indique que ABHD6 régule non seulement l’homéostasie de l'insuline et du glucose, mais aussi l'homéostasie énergétique et la fonction des tissus adipeux. Ainsi, 1-MAG agit non seulement comme un facteur de couplage métabolique pour réguler la sécrétion d'insuline en activant Munc13-1 dans les cellules bêta, mais régule aussi le brunissement des adipocytes blancs et améliore la fonction de la graisse brune par l'activation de PPARα et PPARγ. Ces résultats indiquent que ABHD6 est une cible prometteuse pour le développement de thérapies contre l'obésité, le diabète de type 2 et le syndrome métabolique.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Le diabète de type 2 (DT2) est une maladie métabolique complexe causée par des facteurs génétiques mais aussi environnementaux, tels la sédentarité et le surpoids. La dysfonction de la cellule β pancréatique est maintenant reconnue comme l’élément déterminant dans le développement du DT2. Notre laboratoire s’intéresse à la sécrétion d’insuline par la cellule β en réponse aux nutriments calorigéniques et aux mécanismes qui la contrôle. Alors que la connaissance des mécanismes responsables de l’induction de la sécrétion d’insuline en réponse aux glucose et acides gras est assez avancée, les procédés d’inhibition de la sécrétion dans des contextes normaux ou pathologiques sont moins bien compris. L’objectif de la présente thèse était d’identifier quelques-uns de ces mécanismes de régulation négative de la sécrétion d’insuline dans la cellule β pancréatique, et ce en situation normale ou pathologique en lien avec le DT2. La première hypothèse testée était que l’enzyme mitochondriale hydroxyacyl-CoA déshydrogénase spécifique pour les molécules à chaîne courte (short-chain hydroxyacyl-CoA dehydrogenase, SCHAD) régule la sécrétion d’insuline induite par le glucose (SIIG) par la modulation des concentrations d’acides gras ou leur dérivés tels les acyl-CoA ou acyl-carnitine dans la cellule β. Pour ce faire, nous avons utilisé la technologie des ARN interférants (ARNi) afin de diminuer l’expression de SCHAD dans la lignée cellulaire β pancréatique INS832/13. Nous avons par la suite vérifié chez la souris DIO (diet-induced obesity) si une exposition prolongée à une diète riche en gras activerait certaines voies métaboliques et signalétiques assurant une régulation négative de la sécrétion d’insuline et contribuerait au développement du DT2. Pour ce faire, nous avons mesuré la SIIG, le métabolisme intracellulaire des lipides, la fonction mitochondriale et l’activation de certaines voies signalétiques dans les îlots de Langerhans isolés des souris normales (ND, normal diet) ou nourries à la dière riche en gras (DIO) Nos résultats suggèrent que l’enzyme SCHAD est importante dans l’atténuation de la sécrétion d’insuline induite par le glucose et les acides aminés. En effet, l’oxydation des acides gras par la protéine SCHAD préviendrait l’accumulation d’acyl-CoA ou de leurs dérivés carnitine à chaîne courtes potentialisatrices de la sécrétion d’insuline. De plus, SCHAD régule le métabolisme du glutamate par l’inhibition allostérique de l’enzyme glutamate déshydrogénase (GDH), prévenant ainsi une hyperinsulinémie causée par une sur-activité de GDH. L’étude de la dysfonction de la cellule β dans le modèle de souris DIO a démontré qu’il existe une grande hétérogénéité dans l’obésité et l’hyperglycémie développées suite à la diète riche en gras. L’orginialité de notre étude réside dans la stratification des souris DIO en deux groupes : les faibles et forts répondants à la diète (low diet responders (LDR) et high diet responder (HDR)) sur la base de leur gain de poids corporel. Nous avons mis en lumières divers mécanismes liés au métabolisme des acides gras impliqués dans la diminution de la SIIG. Une diminution du flux à travers le cycle TG/FFA accompagnée d’une augmentation de l’oxydation des acides gras et d’une accumulation intracellulaire de cholestérol contribuent à la diminution de la SIIG chez les souris DIO-HDR. De plus, l’altération de la signalisation par les voies AMPK (AMP-activated protein kinase) et PKC epsilon (protéine kinase C epsilon) pourrait expliquer certaines de ces modifications du métabolisme des îlots DIO et causer le défaut de sécrétion d’insuline. En résumé, nous avons mis en lumière des mécanismes importants pour la régulation négative de la sécrétion d’insuline dans la cellule β pancréatique saine ou en situation pathologique. Ces mécanismes pourraient permettre d’une part de limiter l’amplitude ou la durée de la sécrétion d’insuline suite à un repas chez la cellule saine, et d’autre part de préserver la fonction de la cellule β en retardant l’épuisement de celle-ci en situation pathologique. Certaines de ces voies peuvent expliquer l’altération de la sécrétion d’insuline dans le cadre du DT2 lié à l’obésité. À la lumière de nos recherches, le développement de thérapies ayant pour cible les mécanismes de régulation négative de la sécrétion d’insuline pourrait être bénéfique pour le traitement de patients diabétiques.
Resumo:
Le diabète est une maladie chronique de l’homéostasie du glucose caractérisée par une hyperglycémie non contrôlée qui est le résultat d’une défaillance de la sécrétion d’insuline en combinaison ou non avec une altération de l’action de l’insuline. La surnutrition et le manque d’activité physique chez des individus qui ont des prédispositions génétiques donnent lieu à la résistance à l’insuline. Pendant cette période dite de compensation où la concentration d’acides gras plasmatiques est élevée, l’hyperinsulinémie compense pleinement pour la résistance à l’insuline des tissus cibles et la glycémie est normale. Le métabolisme du glucose par la cellule pancréatique bêta entraîne la sécrétion d’insuline. Selon le modèle classique de la sécrétion d’insuline induite par le glucose, l’augmentation du ratio ATP/ADP résultant de la glycolyse et de l’oxydation du glucose, induit la fermeture des canaux KATP-dépendant modifiant ainsi le potentiel membranaire suivi d’un influx de Ca2+. Cet influx de Ca2+ permet l’exocytose des granules de sécrétion contenant l’insuline. Plusieurs nutriments comme les acides gras sont capables de potentialiser la sécrétion d’insuline. Cependant, le modèle classique ne permet pas d’expliquer cette potentialisation de la sécrétion d’insuline par les acides gras. Pour expliquer l’effet potentialisateur des acides gras, notre laboratoire a proposé un modèle complémentaire où le malonyl-CoA dérivé du métabolisme anaplérotique du glucose inhibe la carnitine palmitoyltransférase-1, l’enzyme qui constitue l’étape limitante de l’oxydation des acides gras favorisant ainsi leur estérification et donc la formation de dérivés lipidiques signalétiques. Le modèle anaplérotique/lipidique de la sécrétion d'insuline induite par le glucose prédit que le malonyl-CoA dérivé du métabolisme du glucose inhibe la bêta-oxydation des acides gras et augmente la disponibilité des acyl-CoA ou des acides gras non-estérifiés. Les molécules lipidiques agissant comme facteurs de couplage du métabolisme des acides gras à l'exocytose d'insuline sont encore inconnus. Des travaux réalisés par notre laboratoire ont démontré qu’en augmentant la répartition des acides gras vers la bêta-oxydation, la sécrétion d’insuline induite par le glucose était réduite suggérant qu’un des dérivés de l’estérification des acides gras est important pour la potentialisation sur la sécrétion d’insuline. En effet, à des concentrations élevées de glucose, les acides gras peuvent être estérifiés d’abord en acide lysophosphatidique (LPA), en acide phosphatidique (PA) et en diacylglycérol (DAG) et subséquemment en triglycérides (TG). La présente étude a établi l’importance relative du processus d’estérification des acides gras dans la production de facteurs potentialisant la sécrétion d’insuline. Nous avions émis l’hypothèse que des molécules dérivées des processus d’estérification des acides gras (ex : l’acide lysophosphatidique (LPA) et le diacylglycerol (DAG)) agissent comme signaux métaboliques et sont responsables de la modulation de la sécrétion d’insuline en présence d’acides gras. Afin de vérifier celle-ci, nous avons modifié le niveau d’expression des enzymes clés contrôlant le processus d’estérification par des approches de biologie moléculaire afin de changer la répartition des acides gras dans la cellule bêta. L’expression des différents isoformes de la glycérol-3-phosphate acyltransférase (GPAT), qui catalyse la première étape d’estérification des acides gras a été augmenté et inhibé. Les effets de la modulation de l’expression des isoenzymes de GPAT sur les processus d’estérifications, sur la bêta-oxydation et sur la sécrétion d’insuline induite par le glucose ont été étudiés. Les différentes approches que nous avons utilisées ont changé les niveaux de DAG et de TG sans toutefois altérer la sécrétion d’insuline induite par le glucose. Ainsi, les résultats de cette étude n’ont pas associé de rôle pour l’estérification de novo des acides gras dans leur potentialisation de la sécrétion d’insuline. Cependant, l’estérification des acides gras fait partie intégrante d’un cycle de TG/acides gras avec sa contrepartie lipolytique. D’ailleurs, des études parallèles à la mienne menées par des collègues du laboratoire ont démontré un rôle pour la lipolyse et un cycle TG/acides gras dans la potentialisation de la sécrétion d’insuline par les acides gras. Parallèlement à nos études des mécanismes de la sécrétion d’insuline impliquant les acides gras, notre laboratoire s’intéresse aussi aux effets négatifs des acides gras sur la cellule bêta. La glucolipotoxicité, résultant d’une exposition chronique aux acides gras saturés en présence d’une concentration élevée de glucose, est d’un intérêt particulier vu la prépondérance de l’obésité. L’isoforme microsomal de GPAT a aussi utilisé comme outil moléculaire dans le contexte de la glucolipotoxicité afin d’étudier le rôle de la synthèse de novo de lipides complexes dans le contexte de décompensation où la fonction des cellules bêta diminue. La surexpression de l’isoforme microsomal de la GPAT, menant à l’augmentation de l’estérification des acides gras et à une diminution de la bêta-oxydation, nous permet de conclure que cette modification métabolique est instrumentale dans la glucolipotoxicité.
Resumo:
Résumé Régulation de l'expression de la Connexin36 dans les cellules sécrétrices d'insuline La communication intercellulaire est en partie assurée via des jonctions communicantes de type "gap". Dans la cellule ß pancréatique, plusieurs observations indiquent que le couplage assuré par des jonctions gap formées parla Connexine36 (Cx36) est impliqué dans le contrôle de la sécrétion de l'insuline. De plus, nous avons récemment démontré qu'un niveau précis d'expression de la Cx36 est nécessaire pour maintenir une bonne coordination de l'ensemble des cellules ß, et permettre ainsi une sécrétion synchrone et contrôlée d'insuline. Le développement du diabète et du syndrome métabolique est partiellement dû à une altération de la capacité des cellules ß à sécréter de l'insuline en réponse à une augmentation de la glycémie. Cette altération est en partie causée par l'augmentation prolongée des taux circulant de glucose, mais aussi de lipides, sous la forme d'acides gras libres, et de LDL (Low Density Lipoproteins), particules assurant le transport des acides gras et du cholestérol dans le sang. Nous avons étudié la régulation de l'expression de la Cx36 dans différentes conditions reflétant la physiopathologie du diabète de type 2 et du syndrome métabolique et démontré qu'une exposition prolongée à des concentrations élevées de glucose, de LDL, ainsi que de palmitate (acide gras saturé le plus abondant dans l'organisme), inhibent l'expression de la Cx36 dans les cellules ß. Cette inhibition implique l'activation de la PKA (Proteine Kinase A), qui stimule à son tour l'expression du facteur de transcription ICER-1 (Inductible cAMP Early Repressor-1). Ce puissant répresseur se fixe spécifiquement sur un motif CRE (cAMP Response Element), situé dans le promoteur du gène de la Cx36, inhibant ainsi son expression. Nous avons de plus démontré que des cytokines pro-inflammatoires, qui pourraient contribuer au développement du diabète, inhibent également l'expression de la Cx36. Cependant, les cytokines agissent indépendamment du répresseur ICER-1, mais selon un mécanisme requérant l'activation de l'AMPK (AMP dependant protein kinase). Sachant qu'un contrôle précis des niveaux d'expression de la Cx36 est un élément déterminant pour une sécrétion optimale de l'insuline, nos résultats suggèrent que la Cx36 pourrait être impliquée dans l'altération de la sécrétion de l'insuline contribuant à l'apparition du diabète de type 2. Summary A particular way by which cells communicate with each other is mediated by gap junctions, transmembrane structures providing a direct pathway for the diffusion of small molecules between adjacent cells. Gap junctional communication is required to maintain a proper functioning of insulin-secreting ß-cells. Moreover, the expression levels of connexin36 (Cx36), the sole gap junction protein expressed in ß-cells, are critical in maintaining glucose-stimulated insulin secretion. Chronic hyperglycemia and hyperlipidemia exert deleterious effects on insulin secretion and may contribute to the progressive ß-cell failure linked to the development of type 2 diabetes and metabolic syndrome. Since modulations of the Cx36 levels might impair ß-cell function, the general aim of this work was to elucidate wether elevated levels of glucose and lipids affect Cx36 expression. The first part of this work was dedicated to the study of the effect of high glucose concentrations on Cx36 expression. We demonstrated that glucose transcriptionally down-regulates the expression of Cx36 in insulin-secreting cells through activation of the protein kinase A (PKA), which in turn stimulates the expression of the inducible cAMP early repressor-1 (ICER-1). This repressor binds to a highly conserved cAMP response element (CRE) located in the Cx36 promoter, thereby inhibiting Cx36 expression. The second part of this thesis consisted in studying the effects of sustained exposure to free fatty acids (FFA) and human lipoproteins on Cx36 levels. The experiments revealed that the most abundant FFA, palmitate, as well as the atherogenic low density lipoproteins (LDL), also stimulate ICER-1 expression, resulting in Cx36 down-regulation. Finally, the third part of the work focused on the consequences of long-term exposure to proinflammatory cytokines on Cx36 content. Interleukin-1 ß (IL-1 ß) inhibits Cx36 expression and its effect is potentialized by tumor necrosis factor α (TNFα) and interferon γ (IFNγ). We further unveiled that the cytokines effect on Cx36 levels requires activation of the AMP dependent protein kinase (AMPK). Prolonged exposures to glucose, palmitate, LDL, and pro-inflammatory cytokines have all been proposed to contribute to the development of diabetes and metabolic syndrome. Since Cx36 expression levels are critical to maintain ß-cell function, Cx36 down-regulation by glucose, lipids, and cytokines might participate to the ß-cell failure associated with diabetes development.
Resumo:
Résumé : L'insuline est produite et sécrétée par la cellule ß-pancréatique. Son rôle est de régler le taux de sucre dans le sang. Si ces cellules meurent ou échouent à produire suffisamment de l'insuline, les sujets développent le diabète de type 2 (DT2), une des maladies les plus communes dans les pays développés. L'excès chronique des lipoprotéines LDL oxydés (oxLDL) et/ou des cytokines pro-inflammatoires comme l'interleukine-1ß (IL-1ß) participent au dérèglement et à la mort des cellules ß. Nous avons montré qu'une chute des niveaux d'expression de la protéine nommée «mitogen activated protein kinase 8 interacting protein 1» ou «islet brain 1 (IB 1)» est en partie responsable des effets provoqués par les oxLDL ou IL-1ß. IB1 régule l'expression de l'insuline et la survie cellulaire en inhibant la voie de signalisation « c-jun N-terminal Kinase (JNK)». La réduction des niveaux d'expression d'IB1 provoque l'activation de la voie JNK en réponse aux facteurs environnementaux, et ainsi initie la réduction de l'expression de l'insuline et l'induction du programme de mort cellulaire. Les mimétiques de l'hormone "Glucagon-like peptide 1", tel que l'exendin-4 (ex-4), sont une nouvelle classe d'agents hypoglycémiants utilisés dans le traitement du DT2. Les effets bénéfiques de l'ex-4 sont en partie accomplis en préservant l'expression de l'insuline et la survie des cellules ß contre les stress associés au DT2. La restauration des niveaux d'expression d'IB1 est un des mécanismes par lequel l'ex-4 prodigue son effet sur la cellule. En effet, cette molécule stimule l'activité du promoteur du gène et ainsi compense la réduction du contenu en IB1 causée par le stress. Outre ce rôle anti-apoptotique, dans ce travail de thèse nous avons mis en évidence une autre fonction d'IB1 dans la cellule ß. La réduction de l'activité ou des niveaux d'expression d'IB1 induisent une réduction importante de la sécrétion de l'insuline en réponse au glucose. Le mécanisme par lequel IB1 régule la sécrétion de l'insuline implique à la fois le métabolisme du glucose et éventuellement le transport vésiculaire en contrôlant l'expression de la protéine annexin A2. En résumé, IB 1 est une molécule clé à travers laquelle l'environnement du diabétique pourrait exercer un effet délétère sur la cellule ß. L'amélioration de l'activité d'IB1 et/ou de son expression devrait être considérée dans les approches thérapeutiques futures visant à limiter la perte des cellules ß dans le diabète. Abstract : ß-cells of the pancreatic islets of Langerhans produce and secrete insulin when blood glucose rises. In turn, insulin ensures that plasma glucose concentrations return within a relatively narrow physiological range. If ß-cells die or fail to produce enough insulin, individuals develop one of the most common diseases in Western countries, namely type 2 diabetes (T2D). Chronic excess of oxidized low density lipoproteins (oxLDL) and/or pro-inflammatory cytokines such as interleukin 1-ß (IL-1ß) contribute to decline of ß-cells and thereby are thought to accelerate progression of the disease overtime. We showed that profound reduction in the levels of the mitogen activated protein kinase 8 interacting protein 1 also called islet brain 1 (IB1) causes ß-cell failure accomplished by oxLDL or IL-1 ß. IB1 regulates insulin expression and cell survivals by inhibiting the c-Jun N-terminal Kinase pathway. Diminution in IB 1 levels leads to an increase in activation of the JNK pathway induced by environmental stressors, and thus initiates loss of insulin expression and programmed cell death. The mimetic agents of the glucoincretin glucagon-like peptide 1 such as exendin-4 (ex-4) are new class of hypoglycaemic medicines for treatment of T2D. The beneficial property is in part achieved by preserving insulin expression and ß-cell survival against stressors related to diabetes. Restored levels in IB 1 account for the cytoprotective effect of the ex-4. In fact, the latter molecule .stimulates the promoter activity of the gene and thus compensates loss of IB1 content triggered by stress. Beside of the anti-apoptotic role, an additional leading function for IB 1 in ß-cells was highlighted in this thesis. Impairment in IB1 activity or silencing of the gene in ß-cells revealed a major reduction in insulin secretion elicited by glucose. The mechanisms whereby IB 1 couples glucose to insulin release involve glucose metabolism and potentially, vesicles trafficking by maintaining the levels of annexin A2. IB 1 is therefore a key molecule through which environmental factors related to diabetes may exert harmful effects on ß-cells. Improvement in IB 1 activity and/or expression should be considered as a target for therapeutic purpose.
Resumo:
RESUME Le diabète de type 1 se définit comme un désordre métabolique d'origine auto-immune qui aboutit à la destruction progressive et sélective de la cellule ß-pancréatique sécrétrice d'insuline. Cette maladie représente 10 % des cas de diabète enregistrés dans la population mondiale, et touche les jeunes de moins de 20 ans. Le traitement médical par insulinothérapie corrige le manque d'hormone mais ne prévient pas les nombreuses complications telles que les atteintes cardiaques, neurologiques, rénales, rétiniennes, et les amputations que la maladie provoque. Le remplacement de la cellule ß par transplantation d'îlots de Langerhans est une alternative prometteuse au traitement médical du diabète de type 1. Cependant la greffe d'îlots est encore un traitement expérimental et ne permet pas un contrôle efficace de la glycémie au long terme chez les patients transplantés, et les raisons de cet échec restent mal comprises. L'obstacle immédiat qui se pose est la purification d'un nombre suffisant d'îlots viables et la perte massive de ces îlots dans les premières heures suite à la greffe. Cette tendance presque systématique de la perte fonctionnelle du greffon immédiatement après la transplantation est connue sous le terme de « primary graft non-function » (PNF). En effet, la procédure d'isolement des îlots provoque la destruction des composantes cellulaires et non cellulaires du tissu pancréatique qui jouent un rôle déterminant dans le processus de survie de l'îlot. De plus, la transplantation elle-même expose les cellules à différents stress, notamment le stress par les cytokines inflammatoires qui encourage la mort cellulaire par apoptose et provoque par la suite le rejet de la greffe. L'ensemble de ces mécanismes aboutit a une perte de la masse d'îlot estimée a plus de 60%. Dans ce contexte, nous nous sommes intéressés à définir les voies majeures de stress qui régissent cette perte massive d'îlot par apoptose lors du processus d'isolement et suite à l'exposition immédiate aux cytokines. L'ensemble des résultats obtenus indique que plusieurs voies de signalisation intracellulaire sont recrutées qui s'activent de manière maximale très tôt lors des premières phases de l'isolement. La mise en culture des îlots deux jours permet aux voies activées de revenir aux taux de base. De ce fait nous proposons une stratégie dite de protection qui doit être 1) initiée aussitôt que possible lors de l'isolement des îlots pancréatiques, 2) devrait probablement bloquer l'activation de ces différentes voies de stress mis en évidence lors de notre étude et 3) devrait inclure la mise en culture des îlots purifiés deux jours après l'isolement et avant la transplantation. RESUME LARGE PUBLIC Le diabète est une maladie qui entraîne un taux anormalement élevé de sucre (glucose) dans le sang du à une insuffisance du pancréas endocrine à produire de l'insuline, une hormone qui régule la glycémie (taux de glucose dans le sang). On distingue deux types majeurs de diabètes; le diabète de type 1 ou juvénile ou encore appelé diabète maigre qui se manifeste souvent pendant l'enfance et qui se traduit par une déficience absolue en insuline. Le diabète de type 2 ou diabète gras est le plus fréquent, et touche les sujets de plus de 40 ans qui souffrent d'obésité et qui se traduit par une dysfonction de la cellule ß avec une incapacité à réguler la glycémie malgré la production d'insuline. Dans le diabète de type 1, la destruction de la cellule ß est programmée (apoptose) et est majoritairement provoquée par des médiateurs inflammatoires appelés cytokines qui sont produites localement par des cellules inflammatoires du système immunitaire qui envahissent la cellule ß-pancréatiques. Les cytokines activent différentes voies de signalisation parmi lesquelles on distingue celles des Mitogen-Activated Protein Kinase (MAPKs) composées de trois familles de MAPKs: ERK1/2, p38, et JNK, et la voie NF-κB. Le traitement médical par injections quotidiennes d'insuline permet de contrôler la glycémie mais ne prévient pas les nombreuses complications secondaires liées à cette maladie. La greffe d'îlots de Langerhans est une alternative possible au traitement médical, considérée avantageuse comparée a la greffe du pancréas entier. En effet l'embolisation d'îlots dans le foie par injection intraportale constitue une intervention simple sans complications majeures. Néanmoins la technique de préparation d'îlots altère la fonction endocrine et cause la perte massive d'îlots pancréatiques. De plus, la transplantation elle-même expose la cellule ß à différents stress, notamment le stress par les cytokines inflammatoires qui provoque le rejet de greffon cellulaire. Dans la perspective d'augmenter les rendements des îlots purifiés, nous nous sommes intéressés à définir les voies majeures de stress qui régissent cette perte massive d'îlot lors du processus d'isolement et suite à l'exposition immédiate aux cytokines après transplantation. L'ensemble de ces résultats indique que le stress induit lors de l'isolement des îlots et celui des cytokines recrute différentes voies de signalisation intracellulaire (JNK, p38 et NF-κB) qui s'additionnent entre-elles pour altérer la fonction et la viabilité de l'îlot. De ce fait une stratégie doit être mise en place pour bloquer toute action synergique entre ces différentes voies activées pour améliorer la viabilité et la fonction de la cellule ß lors du greffon cellulaire. SUMMARY Type 1 diabetes mellitus (T1DM) is an autoimmune disease characterized by the progressive and selective destruction of the pancreatic ß-cells that secrete insulin, leading to absolute insulin deficiency. T1DM accounts for about 10% of all diabetes cases, affecting persons younger than 20 years of age. Medical treatment using daily exogenous insulin injection corrects hormone deficiency but does not prevent devastating complications such as heart attack, neuropathy, kidney failure, blindness, and amputation caused by the disease. Pancreatic islet transplantation (PIT) is one strategy that holds promise to cure patients with T1DM, but purified pancreatic islet grafts have failed to maintain long-term glucose homeostasis in human recipients, the reasons for this failure being still poorly understood. There is however a more immediate problem with islet grafting that is dependent upon poor islet recovery from donors and early islet loss following the first hours of grafting. This tendency of islet grafts to fail to function within a short period after transplantation is termed primary graft non-function (PNF). Indeed, the islet isolation procedure itself destroys cellular and non-cellular components of the pancreas that may play a role in supporting islet survival. Further, islet transplantation exposes cells to a variety of stressful stimuli, notably pro-inflammatory cytokines that encourage ß-cell death by apoptosis and lead to early graft failure. Altogether these mechanisms lead to an estimated loss of 60% of the total islet mass. Here, we have mapped the major intracellular stress signaling pathways that may mediate human islet loss by apoptosis during isolation and following cytokine attack. We found that several stress pathways are maximally activated from the earliest stages of the isolation procedure. Culturing islet for two days allow for the activated pathways to return to basal levels. We propose that protective strategies should 1) be initiated as early as possible during isolation of the islets, 2) should probably target the activated stress pathways that we uncovered during our studies and 3) should include culturing islets for two days post-isolation and prior transplantation.
Resumo:
Introduction : La fibrose kystique (FK) est une maladie génétique mortelle qui touche principalement les poumons et l’appareil digestif. Elle est causée par des mutations sur le gène codant la protéine du CFTR, un canal chlore exprimé à la surface des organes à sécrétions exocrines. Les fonctions principales du CFTR sont les suivantes: 1) la régulation de l’homéostasie ionique des sécrétions; 2) le maintien de la fluidité des sécrétions et; 3) le transport du glutathion. Le dysfonctionnement de la protéine du CFTR rend les sécrétions visqueuses et épaisses, avec des phénomènes obstructifs qui sont responsables de l’apparition de fibrose au sein des divers organes. Dans le poumon, l’accumulation du mucus épais rend difficile l’élimination des bactéries inhalées, ces dernières établissent alors des cycles d’infection qui endommagent les tissus pulmonaires à travers des processus inflammatoires. Dans le tube digestif, le mucus épais entrave l’absorption d’une quantité suffisante d’éléments nutritifs incluant les principaux antioxydants. L’infection et l’inflammation des poumons favorisent l’apparition d’un stress oxydant qui détruit davantage le tissu pulmonaire. Le déficit en glutathion, probablement lié au dysfonctionnement de la proteine du CFTR, et la malabsorption des antioxydants favorisent l’augmentation du stress oxydant. Une augmentation du stress oxydant a été démontrée au cours du diabète et les produits dérivés du stress oxydant ont été mis en évidence dans la pathogenèse des complications associées au diabète. Une augmentation du stress oxydant a également été montrée durant la FK, mais sans pour autant expliquer la survenue du diabète secondaire à la FK dont la prévalence augmente sans cesse. Objectifs : Notre étude consiste à évaluer l’impact du stress oxydant dans les anomalies du métabolisme du glucose durant la FK, et à étudier son rôle dans les mécanismes de sécrétion d’insuline induite par le glucose. Pour ce faire, nous avons déterminé l’impact de la peroxydation lipidique sur la tolérance au glucose et la défense antioxydante globale, in vivo, chez des patients FK présentant une altération du métabolisme du glucose. De plus, nous avons évalué le rôle du stress oxydatif sur la synthèse et la sécrétion d’insuline, in vitro, dans les cellules pancréatiques βTC-tet. Résultats : Dans l’étude in vivo, nous avons démontré que l’intolérance au glucose et le diabète étaient associés à une augmentation de la peroxydation lipidique, traduite par la hausse des niveaux sanguins de 4-hydroxynonenal lié aux protéines (HNE-P). La défense antioxydante évaluée par la mesure du glutathion sanguin démontre que les niveaux de glutathion oxydé restent également élevés avec l’intolérance au glucose. Dans l’étude in vitro, nos résultats ont mis en évidence que l’exposition de la cellule βTC-tet au stress oxydant: 1) induit un processus de peroxydation lipidique; 2) augmente la sécrétion basale d’insuline; 3) diminue la réponse de la sécrétion d’insuline induite par le glucose; et 4) n’affecte que légèrement la synthèse de novo de l’insuline. Nous avons aussi démontré que les cellules pancréatiques βTC-tet résistaient au stress oxydant en augmentant leur synthèse en glutathion tandis que la présence d’un antioxydant exogène pouvait restaurer la fonction sécrétoire de ces cellules. Conclusion : Le stress oxydant affecte le fonctionnement de la cellule pancréatique β de plusieurs manières : 1) il inhibe le métabolisme du glucose dont les dérivés sont nécessaires à la sécrétion d’insuline; 2) il active la voie de signalisation impliquant les gènes pro-inflammatoires et; 3) il affecte l’intégrité membranaire en induisant le processus de peroxydation lipidique.
Resumo:
Le diabète de type 2 (DT2) est caractérisé par une résistance des tissus périphériques à l’action de l’insuline et par une insuffisance de la sécrétion d’insuline par les cellules β du pancréas. Différents facteurs tels que le stress du réticulum endoplasmique (RE) et l’immunité innée affectent la fonction de la cellule β-pancréatique. Toutefois, leur implication dans la régulation de la transcription du gène de l’insuline demeure imprécise. Le but de cette thèse était d’identifier et de caractériser le rôle du stress du RE et de l’immunité innée dans la régulation de la transcription du gène de l’insuline. Les cellules β-pancréatiques ont un RE très développé, conséquence de leur fonction spécialisée de biosynthèse et de sécrétion d’insuline. Cette particularité les rend très susceptible au stress du RE qui se met en place lors de l’accumulation de protéines mal repliées dans la lumière du RE. Nous avons montré qu’ATF6 (de l’anglais, activating transcription factor 6), un facteur de transcription impliqué dans la réponse au stress du RE, lie directement la boîte A5 de la région promotrice du gène de l’insuline dans les îlots de Langerhans isolés de rat. Nous avons également montré que la surexpression de la forme active d’ATF6α, mais pas ATF6β, réprime l’activité du promoteur de l’insuline. Toutefois, la mutation ou l’absence de la boîte A5 ne préviennent pas l’inhibition de l’activité promotrice du gène de l’insuline par ATF6. Ces résultats montrent qu’ATF6 se lie directement au promoteur du gène de l’insuline, mais que cette liaison ne semble pas contribuer à son activité répressive. Il a été suggéré que le microbiome intestinal joue un rôle dans le développement du DT2. Les patients diabétiques présentent des concentrations plasmatiques élevées de lipopolysaccharides (LPS) qui affectent la fonction de la cellule β-pancréatique. Nous avons montré que l’exposition aux LPS entraîne une réduction de la transcription du gène de l’insuline dans les îlots de Langerhans de rats, de souris et humains. Cette répression du gène de l’insuline par les LPS est associée à une diminution des niveaux d’ARNms de gènes clés de la cellule β-pancréatique, soit PDX-1 (de l’anglais, pancreatic duodenal homeobox 1) et MafA (de l’anglais, mammalian homologue of avian MafA/L-Maf). En utilisant un modèle de souris déficientes pour le récepteur TLR4 (de l’anglais, Toll-like receptor), nous avons montré que les effets délétères des LPS sur l’expression du gène de l’insuline sollicitent le récepteur de TLR4. Nous avons également montré que l’inhibition de la voie NF-kB entraîne une restauration des niveaux messagers de l’insuline en réponse à une exposition aux LPS dans les îlots de Langerhans de rat. Ainsi, nos résultats montrent que les LPS inhibent le gène de l’insuline dans les cellules β-pancréatiques via un mécanisme moléculaire dépendant du récepteur TLR4 et de la voie NF-kB. Ces observations suggèrent ainsi un rôle pour le microbiome intestinal dans la fonction de la cellule β du pancréas. Collectivement, ces résultats nous permettent de mieux comprendre les mécanismes moléculaires impliqués dans la répression du gène de l'insuline en réponse aux divers changements survenant de façon précoce dans l’évolution du diabète de type 2 et d'identifier des cibles thérapeutiques potentielles qui permettraient de prévenir ou ralentir la détérioration de l'homéostasie glycémique au cours de cette maladie, qui affecte plus de deux millions de Canadiens.
Resumo:
Introduction : Les particules de HDL (High Density Lipoprotein) ont des fonctions diverses notamment en raison de leur structure très hétérogène. Tout d'abord, les HDLs assurent le transport du cholestérol de la périphérie vers le foie mais sont également dotées de nombreuses vertus protectrices. Un grand nombre d'études démontre les mécanismes de protection des HDL sur les cellules endothéliales. Sachant que les patients diabétiques ont ses niveaux bas de HDL, le but de cette étude est d'investiguer les mécanismes moléculaires de protection sur la cellule beta pancréatique. Résultats : Une étude « microarray » nous a permis d'obtenir une liste de gènes régulés par le stress, comme la privation de sérum, en présence ou en absence de HDL. Parmi ces gènes, nous nous sommes particulièrement intéressés à un répresseur de la synthèse protéique « cap » -dépendante, 4EBP1. Dans notre étude transcriptomique, les niveaux d'ARNm de 4E-BP1 augmentaient de 30þ% dans des conditions sans sérum alors que les HDLs bloquaient cette élévation. Au niveau protéique, les niveaux totaux de 4EBP1 étaient augmentés dans les conditions de stress et cette élévation était contrée par les HDLs. D'autres expériences de transfection ou d'infection de 4E-BP1 ont montrés que cette protéine était capable d'induire l'apoptose dans les cellules beta, imitant ainsi l'effet de la privation de sérum. Afin de déterminer le rôle direct de 4E-BP1 dans la mort cellulaire, ses niveaux ont été réduits par interférence ARN. Le niveau de mort cellulaire induit par l'absence de sérum était moins élevé dans des cellules à taux réduits de 4EBP1 par RNAi que dans des cellules contrôle. Conclusion : Ces données montrent que les HDL protègent les cellules beta suite à différents stress et que 4E-BP1 est une des protéines pro-apoptotiques inhibées par les HDL. 4E-BP1 est capable d'induire la mort cellulaire dans les cellules bêta et cette réponse peut-être réduite en diminuant l'expression de cette protéine. Nos données suggèrent que 4E-BP1 est une cible potentielle pour le traitement du diabète.
Resumo:
Introduction: Les particules de HDL (High Density Lipoproteins) ont des fonctions très diverses notamment anti-inflamatoires, anti-apoptotiques ou anti-oxydatives. Chez les patients diabétiques, les niveaux de HDLs sont bas, les prédisposants ainsi à un risque élévé à développer une maladie cardiovasculaire. Sachant que le s HDLs ont également un effet protecteur sur la cellule beta, le but de cette étude est dinvestigué les mécanismes moléculaires de cette protection contre le stress du réticulum, stress qui contriubue au développement du diabéte de type 2. Résultats: La thapsigargine et la tunicamycine induisent lapoptose en induisant un stress dans le réticulum endoplasmique (RE) par un mauvais repliement des protéines dans le RE, ainsi que l'activation de l'UPR (Unfolded Protein Respons) avec trois voies communes de signalisation intracellulaire (IRE1, PREK et ATF6). Ces voix veillent tout d'abord à augmenter la capacité de repliement des protéines et le cas échéant à lapoptose. Nos résultats montrent que les HDLs sont capable d'inhuber lapoptose induite par la thapsigargine et la tunicamycine dans les MIN6. Dans le cas du traitement avec la thapsigargine, plusieurs marqueurs des voix UPR sont bloqués en présence des HDLs, suggérant que l'effet anti-apoptotiques des HDLs s'exerce au niveau ou en amont du RE. Les HDLS par contre ne bloquent par la sortie de calcium du RE induite par la thapsigargine ce qui indique que les HDLs n'interfèrent pas avec l'action de cette drogue sur sa cible (SERCA). Dans le cas de la la tunicamycine, les HDLs ne bloquent pas, ou très légèrement, l'activation des voix de l'UPR. La protection induite par les HDLs contre la mort engendrée par la tunicamycine s'sexerce dont apparement en aval de l'UPR et reste à être déterminer. Conclusions: Nos données suggérent que les HDLs sont capable de protéger la cellule beta contre le stress du réticulum mais apparement de façon différente selon les modalités d'inductions de ce stress.