892 resultados para Cellular prion protein


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cellular prion protein (PrPC) is widely expressed in neural and non-neural tissues, but its function is unknown. Elucidation of the part played by PrPC in adaptive immunity has been a particular conundrum: increased expression of cell surface PrPC has been documented during T-cell activation, yet the functional significance of this activation remains unclear, with conflicting data on the effects of Prnp gene knockout on various parameters of T-cell immunity. We show here that Prnp mRNA is highly inducible within 8–24 h of T-cell activation, with surface protein levels rising from 24 h. When measured in parallel with CD69 and CD25, PrPC is a late activation antigen. Consistent with its up-regulation being a late activation event, PrP deletion did not alter T-cell-antigen presenting cell conjugate formation. Most important, activated PrP0/0 T cells demonstrated much reduced induction of several T helper (Th) 1, Th2, and Th17 cytokines, whereas others, such as TNF- and IL-9, were unaffected. These changes were investigated in the context of an autoimmune model and a bacterial challenge model. In experimental autoimmune encephalomyelitis, PrP-knockout mice showed enhanced disease in the face of reduced IL-17 responses. In a streptococcal sepsis model, this constrained cytokine program was associated with poorer local control of infection, although with reduced bacteremia. The findings indicate that PrPC is a potentially important molecule influencing T-cell activation and effector function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies on the transmission of human (Hu) prions to transgenic (Tg) mice suggested that another molecule provisionally designated protein X participates in the formation of nascent scrapie isoform of prion protein (PrPSc). We report the identification of the site at which protein X binds to the cellular isoform of PrP (PrPC) using scrapie-infected mouse (Mo) neuroblastoma cells transfected with chimeric Hu/MoPrP genes even though protein X has not yet been isolated. Substitution of a Hu residue at position 214 or 218 prevented PrPSc formation. The side chains of these residues protrude from the same surface of the C-terminal α-helix and form a discontinuous epitope with residues 167 and 171 in an adjacent loop. Substitution of a basic residue at positions 167, 171, or 218 also prevented PrPSc formation: at a mechanistic level, these mutant PrPs appear to act as “dominant negatives” by binding protein X and rendering it unavailable for prion propagation. Our findings seem to explain the protective effects of basic polymorphic residues in PrP of humans and sheep and suggest therapeutic and prophylactic approaches to prion diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alzheimer’s disease (AD) is the most prevalent age-related neurodegenerative disease that leads to cognitive impairment and dementia. The major defined pathological hallmark of AD is the accumulation of amyloid beta (Aβ), a neurotoxic peptide, derived from beta and gamma-secretase cleavage of the amyloid precursor protein (APP). It has been described that cellular prion protein (PrPC) plays a role in the pathogenesis of Alzheimer disease. Although, the role of PrPC is still unclear, previous studies showed contradictious results. To elucidate this issue, the main objective of the present study is to investigate the influence of a knockout of the PRNP gene in 5XFAD mice, 5xFAD mice exhibited 5 mutations related to familial Alzheimer disease. These mice show an Aβ1-42 accumulation and an increased neuronal loss during aging. To create a bi-transgenic 5xFAD mice were crossed with Prnp0/0 Zurich 1 mice (prion protein knockout mice). We subjected two transgenic mice (5xFAD and Prnp0/05xFAD) at different ages (3, 9 and 12 months of age) to a battery of task to evaluate cognitive and motoric deficits and a biochemical analysis (ELISA, western blot and immunohistochemistry) to investigate the regulation and potential involvement of downstream signaling proteins in the Aβ induced toxicity process dependent of the PrPC concentration. The study revealed that the deficits induced by Aβ mediated toxicity appeared earlier in 5xFAD mice (9 months of age) than in Prnp0/05xFAD (12 months of age). Investigating the amount of amyloid beta in 5xFAD mice we observed a PrPC dependent regulation in 9 month-old animals of Aβ1−40 but not of the toxic form Aβ1−42. We did not found in Prnp0/05xFAD mice the up-regulation of P-Fyn, Fyn or Cav-1 as we found in 5xFAD mice. This suggests an important role of PrPC in Alzheimer’s disease as a promoter of toxic effect of Aβ oligomers. Our results may suggest the loss of PrPC delays the toxicity of amyloid beta. In conclusion, our data support a role of PrPC as a mediator of Aβ toxicity in AD by promoting early onset of disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A well defined structure is available for the carboxyl half of the cellular prion protein (PrPc), while the structure of the amino terminal half of the molecule remains ill defined. The unstructured nature of the polypeptide has meant that relatively few of the many antibodies generated against PrPc recognise this region. To circumvent this problem, we have used a previously characterised and well expressed fragment derived from the amino terminus of PrPc as bait for panning a single chain antibody phage (scFv-P) library. Using this approach, we identified and characterised I predominant and 3 additional scFv-Ps that contained different V-H and V-L sequences and that bound specifically to the PrPc target. Epitope mapping revealed that all scFv-Ps recognised linear epitopes between PrPc residues 76 and 156. When compared with existing monoclonal antibodies (MAb), the binding of the scFvs was significantly different in that high level binding was evident on truncated forms of PrPc that reacted poorly or not at all with several pre-existing MAbs. These data suggest that the isolated scFv-Ps bind to novel epitopes within the aminocentral region of PrPc. In addition, the binding of MAbs to known linear epitopes within PrPc depends strongly on the endpoints of the target PrPc fragment used. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The amino terminal half of the cellular prion protein PrPc is implicated in both the binding of copper ions and the conformational changes that lead to disease but has no defined structure. However, as some structure is likely to exist we have investigated the use of an established protein refolding technology, fusion to green fluorescence protein (GFP), as a method to examine the refolding of the amino terminal domain of mouse prion protein. Results: Fusion proteins of PrPc and GFP were expressed at high level in E. coli and could be purified to near homogeneity as insoluble inclusion bodies. Following denaturation, proteins were diluted into a refolding buffer whereupon GFP fluorescence recovered with time. Using several truncations of PrPc the rate of refolding was shown to depend on the prion sequence expressed. In a variation of the format, direct observation in E. coli, mutations introduced randomly in the PrPc protein sequence that affected folding could be selected directly by recovery of GFP fluorescence. Conclusion: Use of GFP as a measure of refolding of PrPc fusion proteins in vitro and in vivo proved informative. Refolding in vitro suggested a local structure within the amino terminal domain while direct selection via fluorescence showed that as little as one amino acid change could significantly alter folding. These assay formats, not previously used to study PrP folding, may be generally useful for investigating PrPc structure and PrPc-ligand interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In contrast to the well-characterized carboxyl domain, the amino terminal half of the mature cellular prion protein has no defined structure. Here, following fusion of mouse prion protein fragments to green fluorescence protein as a reporter of protein stability, we report extreme variability in fluorescence level that is dependent on the prion fragment expressed. In particular, exposure of the extreme amino terminus in the context of a truncated prion protein molecule led to rapid degradation, whereas the loss of only six amino terminal residues rescued high level fluorescence. Study of the precise endpoints and residue identity associated with high fluorescence suggested a domain within the amino terminal half of the molecule defined by a long-range intramolecular interaction between 23KKRPKP28 and 143DWED146 and dependent upon the anti-parallel beta-sheet ending at residue 169 and normally associated with the structurally defined carboxyl terminal domain. This previously unreported interaction may be significant for understanding prion bioactivity and for structural studies aimed at the complete prion structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we tested the hypothesis that the glycosylation of the pathogenic isoform of the prion protein (PrP(Sc)) might encode the selective neurotropism of prion strains. We prepared unglycosylated cellular prion protein (PrP(C)) substrate molecules from normal mouse brain by treatment with PNGase F and used reconstituted serial protein cyclic misfolding amplification reactions to produce RML and 301C mouse prions containing unglycosylated PrP(Sc) molecules. Both RML- and 301C-derived prions containing unglycosylated PrP(Sc) molecules were infectious to wild-type mice, and neuropathological analysis showed that mice inoculated with these samples maintained strain-specific patterns of PrP(Sc) deposition and neuronal vacuolation. These results show that PrP(Sc) glycosylation is not necessary for strain-dependent prion neurotropism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conversion of the cellular prion protein (PrPC) into the pathogenic isoform (PrPSc) is the fundamental event underlying transmission and pathogenesis of prion diseases. To control the expression of PrPC in transgenic (Tg) mice, we used a tetracycline controlled transactivator (tTA) driven by the PrP gene control elements and a tTA-responsive promoter linked to a PrP gene [Gossen, M. and Bujard, H. (1992) Proc. Natl. Acad. Sci. USA 89, 5547–5551]. Adult Tg mice showed no deleterious effects upon repression of PrPC expression (>90%) by oral doxycycline, but the mice developed progressive ataxia at ≈50 days after inoculation with prions unless maintained on doxycycline. Although Tg mice on doxycycline accumulated low levels of PrPSc, they showed no neurologic dysfunction, indicating that low levels of PrPSc can be tolerated. Use of the tTA system to control PrP expression allowed production of Tg mice with high levels of PrP that otherwise cause many embryonic and neonatal deaths. Measurement of PrPSc clearance in Tg mice should be possible, facilitating the development of pharmacotherapeutics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prion diseases are natural transmissible neurodegenerative disorders in humans and animals. They are characterized by the accumulation of a protease-resistant scrapie-associated prion protein (PrPSc) of the host-encoded cellular prion protein (PrPC) mainly in the central nervous system. Polymorphisms in the PrP gene are linked to differences in susceptibility for prion diseases. The mechanisms underlying these effects are still unknown. Here we describe studies of the influence of sheep PrP polymorphisms on the conversion of PrPC into protease-resistant forms. In a cell-free system, sheep PrPSc induced the conversion of sheep PrPC into protease-resistant PrP (PrP-res) similar or identical to PrPSc. Polymorphisms present in either PrPC or PrPSc had dramatic effects on the cell-free conversion efficiencies. The PrP variant associated with a high susceptibility to scrapie and short survival times of scrapie-affected sheep was efficiently converted into PrP-res. The wild-type PrP variant associated with a neutral effect on susceptibility and intermediate survival times was converted with intermediate efficiency. The PrP variant associated with scrapie resistance and long survival times was poorly converted. Thus the in vitro conversion characteristics of the sheep PrP variants reflect their linkage with scrapie susceptibility and survival times of scrapie-affected sheep. The modulating effect of the polymorphisms in PrPC and PrPSc on the cell-free conversion characteristics suggests that, besides the species barrier, polymorphism barriers play a significant role in the transmissibility of prion diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The infectious agent of transmissible spongiform encephalopathies is believed to consist of an oligomeric isoform, PrPSc, of the monomeric cellular prion protein, PrPC. The conversion of PrPC to PrPSc is characterized by a decrease in α-helical structure, an increase in β-sheet content, and the formation of PrPSc amyloid. Whereas the N-terminal part of PrPC comprising residues 23–120 is flexibly disordered, its C-terminal part, PrP(121–231), forms a globular domain with three α-helices and a small β-sheet. Because the segment of residues 90–231 is protease-resistant in PrPSc, it is most likely structured in the PrPSc form. The conformational change of the segment containing residues 90–120 thus constitutes the minimal structural difference between PrPC and a PrPSc monomer. To test whether PrP(121–231) is also capable to undergo conformational transitions, we analyzed its urea-dependent unfolding transitions at neutral and acidic pH. We identified an equilibrium unfolding intermediate of PrP(121–231) that is exclusively populated at acidic pH and shows spectral characteristics of a β-sheet protein. The intermediate is in rapid equilibrium with native PrP(121–231), significantly populated in the absence of urea at pH 4.0, and may have important implications for the presumed formation of PrPSc during endocytosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conversion of the cellular isoform of prion protein (PrPC) into the scrapie isoform (PrPSc) involves an increase in the beta-sheet content, diminished solubility, and resistance to proteolytic digestion. Transgenetic studies argue that PrPC and PrPSc form a complex during PrPSc formation; thus, synthetic PrP peptides, which mimic the conformational pluralism of PrP, were mixed with PrPC to determine whether its properties were altered. Peptides encompassing two alpha-helical domains of PrP when mixed with PrPC produced a complex that displayed many properties of PrPSc. The PrPC-peptide complex formed fibrous aggregates and up to 65% of complexed PrPC sedimented at 100,000 x g for 1 h, whereas PrPC alone did not. These complexes were resistant to proteolytic digestion and displayed a high beta-sheet content. Unexpectedly, the peptide in a beta-sheet conformation did not form the complex, whereas the random coil did. Addition of 2% Sarkosyl disrupted the complex and rendered PrPC sensitive to protease digestion. While the pathogenic A117V mutation increased the efficacy of complex formation, anti-PrP monoclonal antibody prevented interaction between PrPC and peptides. Our findings in concert with transgenetic investigations argue that PrPC interacts with PrPSc through a domain that contains the first two putative alpha-helices. Whether PrPC-peptide complexes possess prion infectivity as determined by bioassays remains to be established.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The prion protein (PrP(C)) is a conserved glycosylphosphatidyl-inositol-anchored cell surface protein expressed by neurons and other cells. Stress-inducible protein 1 (STI1) binds PrP(C) extracellularly, and this activated signaling complex promotes neuronal differentiation and neuroprotection via the extracellular signal-regulated kinase 1 and 2 (ERK1/2) and cAMP-dependent protein kinase 1 (PKA) pathways. However, the mechanism by which the PrPC-STI1 interaction transduces extracellular signals to the intracellular environment is unknown. We found that in hippocampal neurons, STI1-PrP(C) engagement induces an increase in intracellular Ca(2+) levels. This effect was not detected in PrP(C)-null neurons or wild-type neurons treated with an STI1 mutant unable to bind PrP(C). Using a best candidate approach to test for potential channels involved in Ca(2+) influx evoked by STI1-PrP(C), we found that alpha-bungarotoxin, a specific inhibitor for alpha 7 nicotinic acetylcholine receptor (alpha 7nAChR), was able to block PrP(C)-STI1-mediated signaling, neuroprotection, and neuritogenesis. Importantly, when alpha 7nAChR was transfected into HEK 293 cells, it formed a functional complex with PrP(C) and allowed reconstitution of signaling by PrP(C)-STI1 interaction. These results indicate that STI1 can interact with the PrP(C).alpha 7nAChR complex to promote signaling and provide a novel potential target for modulation of the effects of prion protein in neurodegenerative diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prion protein (PrPC), when associated with the secreted form of the stress-inducible protein 1 (STI1), plays an important role in neural survival, neuritogenesis, and memory formation. However, the role of the PrP(C)-STI1 complex in the physiology of neural progenitor/stem cells is unknown. In this article, we observed that neurospheres cultured from fetal forebrain of wild-type (Prnp(+/+)) and PrP(C)-null (Prnp(0/0)) mice were maintained for several passages without the loss of self-renewal or multipotentiality, as assessed by their continued capacity to generate neurons, astrocytes, and oligodendrocytes. The homogeneous expression and colocalization of STI1 and PrP(C) suggest that they may associate and function as a complex in neurosphere-derived stem cells. The formation of neurospheres from Prnp(0/0) mice was reduced significantly when compared with their wild-type counterparts. In addition, blockade of secreted STI1, and its cell surface ligand, PrP(C), with specific antibodies, impaired Prnp(+/+) neurosphere formation without further impairing the formation of Prnp(0/0) neurospheres. Alternatively, neurosphere formation was enhanced by recombinant STI1 application in cells expressing PrP(C) but not in cells from Prnp(0/0) mice. The STI1-PrP(C) interaction was able to stimulate cell proliferation in the neurosphere-forming assay, while no effect on cell survival or the expression of neural markers was observed. These data suggest that the STI1-PrP(C) complex may play a critical role in neural progenitor/stem cells self-renewal via the modulation of cell proliferation, leading to the control of the stemness capacity of these cells during nervous system development. STEM CELLS 2011;29:1126-1136

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The secreted cochaperone STI1 triggers activation of protein kinase A (PKA) and ERK1/2 signaling by interacting with the cellular prion (PrPC) at the cell surface, resulting in neuroprotection and increased neuritogenesis. Here, we investigated whether STI1 triggers PrPC trafficking and tested whether this process controls PrPC-dependent signaling. We found that STI1, but not a STI1 mutant unable to bind PrPC, induced PrPC endocytosis. STI1-induced signaling did not occur in cells devoid of endogenous PrPC; however, heterologous expression of PrPC reconstituted both PKA and ERK1/2 activation. In contrast, a PrPC mutant lacking endocytic activity was unable to promote ERK1/2 activation induced by STI1, whereas it reconstituted PKA activity in the same condition, suggesting a key role of endocytosis in the former process. The activation of ERK1/2 by STI1 was transient and appeared to depend on the interaction of the two proteins at the cell surface or shortly after internalization. Moreover, inhibition of dynamin activity by expression of a dominant-negative mutant caused the accumulation and colocalization of these proteins at the plasma membrane, suggesting that both proteins use a dynamin-dependent internalization pathway. These results show that PrPC endocytosis is a necessary step to modulate STI1-dependent ERK1/2 signaling involved in neuritogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The prion protein (PrP(C)) is highly expressed in the nervous system, and its abnormal conformer is associated with prion diseases. PrP(C) is anchored to cell membranes by glycosylphosphatidylinositol, and transmembrane proteins are likely required for PrP(C)-mediated intracellular signaling. Binding of laminin (Ln) to PrP(C) modulates neuronal plasticity and memory. We addressed signaling pathways triggered by PrP(C)-Ln interaction in order to identify transmembrane proteins involved in the transduction of PrP(C)-Ln signals. The Ln gamma 1-chain peptide, which contains the Ln binding site for PrP(C), induced neuritogenesis through activation of phospholipase C (PLC), Ca(2+) mobilization from intracellular stores, and protein kinase C and extracellular signal-regulated kinase (ERK1/2) activation in primary cultures of neurons from wild-type, but not PrP(C)-null mice. Phage display, coimmunoprecipitation, and colocalization experiments showed that group I metabotropic glutamate receptors (mGluR1/5) associate with PrP(C). Expression of either mGluR1 or mGluR5 in HEK293 cells reconstituted the signaling pathways mediated by PrP(C)-Ln gamma 1 peptide interaction. Specific inhibitors of these receptors impaired PrP(C)-Ln gamma 1 peptide-induced signaling and neuritogenesis. These data show that group I mGluRs are involved in the transduction of cellular signals triggered by PrP(C)-Ln, and they support the notion that PrP(C) participates in the assembly of multiprotein complexes with physiological functions on neurons.-Beraldo, F. H., Arantes, C. P., Santos, T. G., Machado, C. F., Roffe, M., Hajj, G. N., Lee, K. S., Magalhaes, A. C., Caetano, F. A., Mancini, G. L., Lopes, M. H., Americo, T. A., Magdesian, M. H., Ferguson, S. S. G., Linden, R., Prado, M. A. M., Martins, V. R. Metabotropic glutamate receptors trans-duce signals for neurite outgrowth after binding of the prion protein to laminin gamma 1 chain. FASEB J. 25, 265-279 (2011). www.fasebj.org