925 resultados para Cellular junction
Resumo:
We investigated the immunohistochemistry expression of claudins -1 and -7 in ameloblastoma and in human dental germs on the pattern of distribution (focal, regional or diffuse), the cells that expressed (if central or peripheral) and the location of that expression in the cell components recital membrane, cytoplasm and nucleus. Among the 29 cases of ameloblastoma, 24 were type solid and 6 unicystic. In 7 mandibular specimens of human fetuses found dental germs from the stage of bud to the crown. We note that the pattern of expression in the dental germs was variable for claudinas studied according to the cell type and stage of differentiation and was invariate only in the cells of stellate reticulum. In epithelium internal of enamel organ, claudin-1 has been decreasing with the progression of differentiation as to claudina-7 that was found in the cells of the peripheral papilla. For ameloblastoma the expression was more significant than that observed in dental germs. Fisher s exact test no found association between the expression of claudinas cells in central and peripheral and the type of ameloblastoma (solid or unicystic). Thus, in general the claudin-1 was positive in the central cell of 93,1% of the cases and in peripheral cells of 51,7%. The claudin-7 was expressed in the cells of all cases central and peripheral cells from 89,7%. For both claudins the distribution was predominantly diffuse cells both in central and peripheral cells. Given our findings it is suggested that the expression of claudins may be indicative of the involvement of these molecules in morphogenetics events culminating with the dental development and that possibly influence the development of neoplastic ameloblastoma
Resumo:
In epithelial/endothelial barriers, claudins form tight junctions, seal the paracellular cleft, and limit the uptake of solutes and drugs. The peptidomimetic C1C2 from the C-terminal half of claudin-1's first extracellular loop increases drug delivery through epithelial claudin-1 barriers. However, its molecular and structural mode of action remains unknown. In the present study, >100 μM C1C2 caused paracellular opening of various barriers with different claudin compositions, ranging from epithelial to endothelial cells, preferentially modulating claudin-1 and claudin-5. After 6 h incubation, C1C2 reversibly increased the permeability to molecules of different sizes; this was accompanied by redistribution of claudins and occludin from junctions to cytosol. Internalization of C1C2 in epithelial cells depended on claudin-1 expression and clathrin pathway, whereby most C1C2 was retained in recyclosomes >2 h. In freeze-fracture electron microscopy, C1C2 changed claudin-1 tight junction strands to a more parallel arrangement and claudin-5 strands from E-face to P-face association - drastic and novel effects. In conclusion, C1C2 is largely recycled in the presence of a claudin, which explains the delayed onset of barrier and junction loss, the high peptide concentration required and the long-lasting effect. Epithelial/endothelial barriers are specifically modulated via claudin-1/claudin-5, which can be targeted to improve drug delivery.
Resumo:
Cadherins are cell–cell adhesion receptors whose adhesive function requires their association with the actin cytoskeleton via proteins called catenins. The small guanosine triphosphatases (GTPases), Rho and Rac, are intracellular proteins that regulate the formation of distinct actin structures in different cell types. In keratinocytes and in other epithelial cells, Rho and Rac activities are required for E-cadherin function. Here we show that the regulation of cadherin adhesiveness by the small GTPases is influenced by the maturation status of the junction and the cellular context. E-cadherin localization was disrupted in mature keratinocyte junctions after inhibition of Rho and Rac. However, an incubation of 2 h was required after GTPase inhibition, when compared with newly established E-cadherin contacts (30 min). Regarding other cadherin receptors, P-cadherin was effectively removed from mature keratinocytes junctions by blocking Rho or Rac. In contrast, VE-cadherin localization at endothelial junctions was independent of Rho/Rac activity. We demontrate that the insensitivity of VE-cadherin to inhibition of Rho and Rac was not due to the maturation status of endothelial junction, but rather the cellular background: when transfected into CHO cells, the localization of VE-cadherin was perturbed by inhibition of Rho proteins. Our results suggest that the same stimuli may have different activity in regulating the paracellular activity in endothelial and epithelial cells. In addition, we uncovered possible roles for the small GTPases during the establishment of E-cadherin–dependent contacts. In keratinocytes, Rac activation by itself cannot promote accumulation of actin at the cell periphery in the absence of cadherin-dependent contacts. Moreover, neither Rho nor Rac activation was sufficient to redistribute cadherin molecules to cell borders, indicating that redistribution results mostly from the homophilic binding of the receptors. Our results point out the complexity of the regulation of cadherin-mediated adhesion by the small GTPases, Rho and Rac.
Resumo:
Craniopharyngiomas (CP) are benign epithelial tumors of the sellar region and can be clinicopathologically distinguished into adamantinomatous (adaCP) and papillary (papCP) variants. Both subtypes are classified according to the World Health Organization grade I, but their irregular digitate brain infiltration makes any complete surgical resection difficult to obtain. Herein, we characterized the cellular interface between the tumor and the surrounding brain tissue in 48 CP (41 adaCP and seven papCP) compared to non-neuroepithelial tumors, i.e., 12 cavernous hemangiomas, 10 meningiomas, and 14 metastases using antibodies directed against glial fibrillary acid protein (GFAP), vimentin, nestin, microtubule-associated protein 2 (MAP2) splice variants, and tenascin-C. We identified a specific cell population characterized by the coexpression of nestin, MAP2, and GFAP within the invasion niche of the adamantinomatous subtype. This was especially prominent along the finger-like protrusions. A similar population of presumably astroglial precursors was not visible in other lesions under study, which characterize them as distinct histopathological feature of adaCP. Furthermore, the outer tumor cell layer of adaCP showed a distinct expression of MAP2, a novel finding helpful in the differential diagnosis of epithelial tumors in the sellar region. Our data support the hypothesis that adaCP, unlike other non-neuroepithelial tumors of the central nervous system, create a tumor-specific cellular environment at the tumor-brain junction. Whether this facilitates the characteristic infiltrative growth pattern or is the consequence of an activated Wnt signaling pathway, detectable in 90% of these tumors, will need further consideration.
Resumo:
Individuals with Down syndrome (DS) present important motor deficits that derive from altered motor development of infants and young children. DYRK1A, a candidate gene for DS abnormalities has been implicated in motor function due to its expression in motor nuclei in the adult brain, and its overexpression in DS mouse models leads to hyperactivity and altered motor learning. However, its precise role in the adult motor system, or its possible involvement in postnatal locomotor development has not yet been clarified. During the postnatal period we observed time-specific expression of Dyrk1A in discrete subsets of brainstem nuclei and spinal cord motor neurons. Interestingly, we describe for the first time the presence of Dyrk1A in the presynaptic terminal of the neuromuscular junctions and its axonal transport from the facial nucleus, suggesting a function for Dyrk1A in these structures. Relevant to DS, Dyrk1A overexpression in transgenic mice (TgDyrk1A) produces motor developmental alterations possibly contributing to DS motor phenotypes and modifies the numbers of motor cholinergic neurons, suggesting that the kinase may have a role in the development of the brainstem and spinal cord motor system.
Resumo:
Bone homeostasis seems to be controlled by delicate and subtle “cross talk” between the nervous system and “osteo-neuromediators” that control bone remodeling. The purpose of this study was to evaluate the effect of interactions between neuropeptides and human bone morphogenetic protein 2 (hBMP2) on human osteoblasts. We also investigated the effects of neuropeptides and hBMP2 on gap junction intercellular communication (GJIC). Osteoblasts were treated with neuropeptide Y (NPY), substance P (SP), or hBMP2 at three concentrations. At various intervals after treatment, cell viability was measured by the MTT assay. In addition, cellular alkaline phosphatase (ALP) activity and osteocalcin were determined by colorimetric assay and radioimmunoassay, respectively. The effects of NPY, SP and hBMP on GJIC were determined by laser scanning confocal microscopy. The viability of cells treated with neuropeptides and hBMP2 increased significantly in a time-dependent manner, but was inversely associated with the concentration of the treatments. ALP activity and osteocalcin were both reduced in osteoblasts exposed to the combination of neuropeptides and hBMP2. The GJIC of osteoblasts was significantly increased by the neuropeptides and hBMP2. These results suggest that osteoblast activity is increased by neuropeptides and hBMP2 through increased GJIC. Identification of the GJIC-mediated signal transduction capable of modulating the cellular activities of bone cells represents a novel approach to studying the biology of skeletal innervation.
Resumo:
In order to characterize the cellular component of the polymorphous low-grade adenocarcinoma (PLGA) of the salivary gland, a morphological and immunohistochemical study was carried out. Thirty cases of PLGA were studied by light microscopy and immunohistochemistry and five cases by transmission electron microscopy (TEM). The expression of cytokeratins (CKs) 7,8,10,13,14,18,19, vimentin and muscle-specific actin (MSA) was investigated through the streptavidin-biotin method. The majority of tumor cells stained for vimentin, CKs 8,18 and 7. CK 14 was positive in most cells of the papillary and trabecular sub-types. Although the expression of CKs 8,18 and 14 varied among the tumors sub-types, a straight relationship between each histologic pattern and the CK expression could not be delineated. MSA was reactive in only three tumors while CKs 10 and 13 were not detected in any tumor studied. The absence of MSA and the expression of CKs 8,18 and 7, in most of the tumor cells, lead to the hypothesis that myoepithelial cells are not the major cellular component of the PLGA. TEM revealed cells exhibiting microvilli and variable amounts of secretory granules, some of them suggesting an excretory activity. The presence of CKs 8, 18 and 7, added to the secretory granules, indicates that PLGA originates from cells located at the acinar-intercalated duct junction. (C) 1999 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The myotendinous junction (MTJ) is a major area for transmitting force from the skeletal muscle system and acts in joint position and stabilization. This study aimed to use transmission electron microscopy to describe the ultrastructural features of the MTJ of the sternomastoid muscle in Wistar rats from newborn to formation during adulthood and possible changes with aging. Ultrastructural features of the MTJ from the newborn group revealed pattern during development with interactions between muscle cells and extracellular matrix elements with thin folds in the sarcolemma and high cellular activity evidenced through numerous oval mitochondria groupings. The adult group had classical morphological features of the MTJ, with folds in the sarcolemma forming long projections called finger-like processes and sarcoplasmic invaginations. Sarcomeres were aligned in series, showing mitochondria near the Z line in groupings between collagen fiber bundles. The old group had altered finger-like processes, thickened in both levels of sarcoplasmic invaginations and in central connections with the lateral junctions. We conclude that the MTJ undergoes intense activity from newborn to its formation during adulthood. With increasing age, changes to the MTJ were observed in the shapes of the invaginations and finger-like processes due to hypoactivity, potentially compromising force transmission and joint stability. Microsc. Res. Tech. 75:12921296, 2012. (C) 2012 Wiley Periodicals, Inc.
Resumo:
The origin and structure of P55$\sp{\rm gag},$ a gag encoded polyprotein lacking the nucleocapsid protein, NCp10, have been explored. Evidence shows that P55$\sp{\rm gag}$ is formed by non-viral proteolytic cleavage of the Moloney murine leukemia virus (MoMuLV)gag precursor protein, Pr65$\sp{\rm gag}.$ P55$\sp{\rm gag}$ is produced in cells infected by a viral protease deletion mutant and by a recombinant murine sarcoma virus known to lack the protease gene, implying that a cellular protease is responsible for the cleavage. Structural and immunological studies show that the protein cleavage site is upstream of the CAp30-NCp10 viral proteolytic junction, implying that P55$\sp{\rm gag}$ lacks the carboxy-terminal residues of CAp30. During the course of studying P55$\sp{\rm gag},$ another protein was discovered, which I named nucleocapsid-related protein(NCRP). NCRP possesses the portion of CAp30 that is lacking in P55$\sp{\rm gag}.$ NCRP possesses antigenic epitopes present in CAp30 and NCp10. NCRP was observed in virus lysates and in nuclear lysates of MoMuLV infected cells; it was not detected in the cytoplasmic fractions of MoMuLV infected cells. Our results indicated that NCRP originates from Pr65$\sp{\rm gag},$ resulting from the same cellular proteolytic cleavage event that produces the viral cellular protein P55$\sp{\rm gag}.$ P55$\sp{\rm gag}$- and NCRP-like proteins also were observed in AKV murine leukemia virus (AKV MuLV) and feline leukemia virus (FeLV) infected cells and in their respective virus particles. The site of cleavage that yields P55$\sp{\rm gag}$ and NCRP is within the carboxy terminus of CAp30, likely within a motif highly conserved among mammalian type C retroviruses. This new motif, called the capsid conserved motif (CCM), overlaps a region containing both a possible bipartite nuclear targeting sequence and a region homologous with the U1 small nuclear ribonucleoprotein 70-kD protein. This domain, when intact, may act as a nuclear targeting sequence for the gag precursor proteins Pr65$\sp{\rm gag}$ and CAp30. Nuclei of cells infected with MoMuLV were examined for the presence of gag proteins. Both Pr65$\sp{\rm gag}$ and CAp30 were detected in the nuclear fraction of MoMuLV, AKV MuLV and FeLV infected cells. P55$\sp{\rm gag}$ was never detected in the nucleus of MoMuLV, AKV MuLV and FeLV infected cells or in their respective virus particles. I propose that NCRP may be involved in sequestering viral genomic RNA for the purposes of encapsidation and intracellular viral genomic RNA dimerization. ^
Resumo:
Connexin-43 (Cx43), a gap junction protein involved in control of cell proliferation, differentiation and migration, has been suggested to have a role in hematopoiesis. Cx43 is highly expressed in osteoblasts and osteogenic progenitors (OB/P). To elucidate the biologic function of Cx43 in the hematopoietic microenvironment (HM) and its influence in hematopoietic stem cell (HSC) activity, we studied the hematopoietic function in an in vivo model of constitutive deficiency of Cx43 in OB/P. The deficiency of Cx43 in OB/P cells does not impair the steady state hematopoiesis, but disrupts the directional trafficking of HSC/progenitors (Ps) between the bone marrow (BM) and peripheral blood (PB). OB/P Cx43 is a crucial positive regulator of transstromal migration and homing of both HSCs and progenitors in an irradiated microenvironment. However, OB/P Cx43 deficiency in nonmyeloablated animals does not result in a homing defect but induces increased endosteal lodging and decreased mobilization of HSC/Ps associated with proliferation and expansion of Cxcl12-secreting mesenchymal/osteolineage cells in the BM HM in vivo. Cx43 controls the cellular content of the BM osteogenic microenvironment and is required for homing of HSC/Ps in myeloablated animals
Resumo:
Cell–cell recognition often requires the formation of a highly organized pattern of receptor proteins (a synapse) in the intercellular junction. Recent experiments [e.g., Monks, C. R. F., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. (1998) Nature (London) 395, 82–86; Grakoui, A., Bromley, S. K., Sumen, C., Davis, M. M., Shaw, A. S., Allen, P. M. & Dustin, M. L. (1999) Science 285, 221–227; and Davis, D. M., Chiu, I., Fassett, M., Cohen, G. B., Mandelboim, O. & Strominger, J. L. (1999) Proc. Natl. Acad. Sci. USA 96, 15062–15067] vividly demonstrate a complex evolution of cell shape and spatial receptor–ligand patterns (several microns in size) in the intercellular junction during immunological synapse formation. The current view is that this dynamic rearrangement of proteins into organized supramolecular activation clusters is driven primarily by active cytoskeletal processes [e.g., Dustin, M. L. & Cooper, J. A. (2000) Nat. Immunol. 1, 23–29; and Wulfing, C. & Davis, M. M. (1998) Science 282, 2266–2269]. Here, aided by a quantitative analysis of the relevant physico-chemical processes, we demonstrate that the essential characteristics of synaptic patterns observed in living cells can result from spontaneous self-assembly processes. Active cellular interventions are superimposed on these self-organizing tendencies and may also serve to regulate the spontaneous processes. We find that the protein binding/dissociation characteristics, protein mobilities, and membrane constraints measured in the cellular environment are delicately balanced such that the length and time scales of spontaneously evolving patterns are in near-quantitative agreement with observations for synapse formation between T cells and supported membranes [Grakoui, A., Bromley, S. K., Sumen, C., Davis, M. M., Shaw, A. S., Allen, P. M. & Dustin, M. L. (1999) Science 285, 221–227]. The model we present provides a common way of analyzing immunological synapse formation in disparate systems (e.g., T cell/antigen-presenting cell junctions with different MHC-peptides, natural killer cells, etc.).
Resumo:
Current knowledge of the long-term, low dose effects of carbamate (CB) anti-cholinesterases on skeletal muscle or on the metabolism and regulation of the molecular forms of acetylcholinesterase (AChE) is limited. This is largely due to the reversible nature of these inhibitors and the subtle effects they induce which has generally made their study difficult and preliminary investigations were conducted to determine suitable study methods. A sequential extraction technique was used to rapidly analyse AChE molecular form activity at the mouse neuromuscular junction and also in peripheral parts of muscle fibres. AChE in the synaptic cleft involved in the termination of cholinergic transmission was successfully assessed by the assay method and by an alternative method using a correlation equation which represented the relationship between synaptic AChE and the prolongation of extra-cellular miniature endplate potentials. It was found that inhibition after in vivo Carbamate (CB) dosing could not be maintained during tissue analysis because CB-inhibited enzyme complexes decarbamoylated vary rapidly and could not be prevented even when maintained on ice. The methods employed did not therefore give a measure of inhibition but presented a profile of metabolic responses to continual, low dose CB treatment. Repetitive and continual infusion with low doses of the CBs: pyridostigmine and physostigmine induced a variety of effects on mouse skeletal muscle. Both compounds induced a mild myopathy in the mouse diaphragm during continual infusion which was characterised by endplate deformation without necrosis; such deformation persisted on termination of treatment but had recovered slightly 14 days later. Endplate and non-endplate AChE molecular forms displayed selective responses to CB treatment. During treatment endplate AChE was reduced whereas non-endplate AChE was largely unaffected, and after treatment, endplate AChE recovered, whereas non-endplate AChE was up-regulated. The mechanisms by which these responses become manifest are unclear but may be due to CB-induced effects on nerve-mediated muscle activity, neurotrophic factors or morphological and physiological changes which arise at the neuromuscular junction. It was concluded that, as well as inhibiting AChE, CBs also influence the metabolism and regulation of the enzyme and induce persistent endplate deformation; possible detrimental effects of long-term, low-dose determination requires further investigation.
Resumo:
The six-layered neuron structure in the cerebral cortex is the foundation for human mental abilities. In the developing cerebral cortex, neural stem cells undergo proliferation and differentiate into intermediate progenitors and neurons, a process known as embryonic neurogenesis. Disrupted embryonic neurogenesis is the root cause of a wide range of neurodevelopmental disorders, including microcephaly and intellectual disabilities. Multiple layers of regulatory networks have been identified and extensively studied over the past decades to understand this complex but extremely crucial process of brain development. In recent years, post-transcriptional RNA regulation through RNA binding proteins has emerged as a critical regulatory nexus in embryonic neurogenesis. The exon junction complex (EJC) is a highly conserved RNA binding complex composed of four core proteins, Magoh, Rbm8a, Eif4a3, and Casc3. The EJC plays a major role in regulating RNA splicing, nuclear export, subcellular localization, translation, and nonsense mediated RNA decay. Human genetic studies have associated individual EJC components with various developmental disorders. We showed previously that haploinsufficiency of Magoh causes microcephaly and disrupted neural stem cell differentiation in mouse. However, it is unclear if other EJC core components are also required for embryonic neurogenesis. More importantly, the molecular mechanism through which the EJC regulates embryonic neurogenesis remains largely unknown. Here, we demonstrated with genetically modified mouse models that both Rbm8a and Eif4a3 are required for proper embryonic neurogenesis and the formation of a normal brain. Using transcriptome and proteomic analysis, we showed that the EJC posttranscriptionally regulates genes involved in the p53 pathway, splicing and translation regulation, as well as ribosomal biogenesis. This is the first in vivo evidence suggesting that the etiology of EJC associated neurodevelopmental diseases can be ribosomopathies. We also showed that, different from other EJC core components, depletion of Casc3 only led to mild neurogenesis defects in the mouse model. However, our data suggested that Casc3 is required for embryo viability, development progression, and is potentially a regulator of cardiac development. Together, data presented in this thesis suggests that the EJC is crucial for embryonic neurogenesis and that the EJC and its peripheral factors may regulate development in a tissue-specific manner.
Resumo:
One of the great challenges of the scientific community on theories of genetic information, genetic communication and genetic coding is to determine a mathematical structure related to DNA sequences. In this paper we propose a model of an intra-cellular transmission system of genetic information similar to a model of a power and bandwidth efficient digital communication system in order to identify a mathematical structure in DNA sequences where such sequences are biologically relevant. The model of a transmission system of genetic information is concerned with the identification, reproduction and mathematical classification of the nucleotide sequence of single stranded DNA by the genetic encoder. Hence, a genetic encoder is devised where labelings and cyclic codes are established. The establishment of the algebraic structure of the corresponding codes alphabets, mappings, labelings, primitive polynomials (p(x)) and code generator polynomials (g(x)) are quite important in characterizing error-correcting codes subclasses of G-linear codes. These latter codes are useful for the identification, reproduction and mathematical classification of DNA sequences. The characterization of this model may contribute to the development of a methodology that can be applied in mutational analysis and polymorphisms, production of new drugs and genetic improvement, among other things, resulting in the reduction of time and laboratory costs.