990 resultados para Cellular factors


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To identify cellular factors that function in -1 ribosomal frameshifting, we have developed assays in the yeast Saccharomyces cerevisiae to screen for host mutants in which frameshifting is specifically affected. Expression vectors have been constructed in which the mouse mammary tumor virus gag-pro frameshift region is placed upstream of the lacZ gene or the CUP1 gene so that the reporters are in the -1 frame relative to the initiation codon. These vectors have been used to demonstrate that -1 frameshifting is recapitulated in yeast in response to retroviral mRNA signals. Using these reporters, we have isolated spontaneous host mutants in two complementation groups, ifs1 and ifs2, in which frameshifting is increased 2-fold. These mutants are also hypersensitive to antibiotics that target the 40S ribosomal subunit. We have cloned the IFS1 gene and shown that it encodes a previously undescribed protein of 1091 aa with clusters of acidic residues in the carboxyl-terminal region. Haploid cells lacking 82% of the IFS1 open reading frame are viable and phenotypically identical to ifs1-1 mutants. This approach could help identify potential targets for antiretroviral agents.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present investigation revealed three types of circulating haemocytes in the haemolymph of F. indicus: hyalinocytes, small-granule haemocytes, and large-granule haemocytes. Intermediate stages indicate the maturing process of a single cell. The presence of enzymes such as peroxidase, phenoloxidase and acid phosphatase in the haemocytes, and the substantial production of oxygen radicals during phagocytosis show that the haemocytes are capable of mounting a fme cellular defense mechanism. The enzyme activities of the serum and the presence of agglutinins in the serum, which may act as opsonins, agglutinate foreign particles and augment phagocytosis, confirm the presence of a superior humoral immune system in F. indicus.Bacterial infection caused considerable variations in the cellular and humoral factors, such as the number of circulating cells and haemagglutinating activity, especially in the initial hours of infection. The total haemocyte count, haemagglutination titer and phenoloxidase enzyme showed significant reductions on bacterial presence and could be used as indicators of bacterial infection.The number of circulating cells showed drastic fluctuation on exposure to pollutants. Nuvan at low concentrations was able to produce changes in the haemolymph factors and in the tissue organization, which implies that the animal is under stress and is easily prone to infections. Exposure to nuvan resulted in significant variation in all of the cellular and humoral factors, especially, the total haemocyte count, percentage of small granule haemocytes, phagocytic activity and the haemagglutinating activity, which might be good indicators of pesticide pollution. Heavy metal exposure caused significant increase in total haemocyte count and reduction in phenoloxidase enzyme activity Even changes in the physio-chemical parameters, such as salinity caused fluctuations in the defense factors, indicating stress in this euryhaline species. The dietary incorporation of a commercial immunostimulant containing P-l,3 glucan resulted in stimulation of some of the humoral defense factors of F indicus, but was time dependent. The modulations, on exposure to various external factors, in the cellular and humoral factors, especially, total haemocyte count, phagocytic activity, haemagglutinating activity and the phenoloxidase and acid phosphatase enzymes suggest that these parameters could be used as indicators of the health status of F indicus, which assist in better monitoring and effective health management of this important cultured species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cell mediated immune response was studied in patients with recent and chronic Schistosoma mansoni infection. Precultured peripheral mononuclear cells showed significantly higher responses to S. mansoni adult worm antigen (SAWA) when compared to fresh cell preparations. The addition of each patient serum to the precultured cells reactions to SAWA or recall antigens demonstrated a strong inhibitory serum action, which was also noted on allogeneic cells derived from healthy subjects. The CD4 subset was the main responding cell to SAWA being this reactivity highly suppressed by the presence of the monocyte macrophage accessory cells. We stressed the simultaneous inhibitory action of humoral and cellular factors on the specific cell response to S. mansoni.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Arenaviruses perturb innate antiviral defense by blocking induction of type I interferon (IFN) production. Accordingly, the arenavirus nucleoprotein (NP) was shown to block activation and nuclear translocation of interferon regulatory factor 3 (IRF3) in response to virus infection. Here, we sought to identify cellular factors involved in innate antiviral signaling targeted by arenavirus NP. Consistent with previous studies, infection with the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) prevented phosphorylation of IRF3 in response to infection with Sendai virus, a strong inducer of the retinoic acid-inducible gene I (RIG-I)/mitochondrial antiviral signaling (MAVS) pathway of innate antiviral signaling. Using a combination of coimmunoprecipitation and confocal microscopy, we found that LCMV NP associates with the IκB kinase (IKK)-related kinase IKKε but that, rather unexpectedly, LCMV NP did not bind to the closely related TANK-binding kinase 1 (TBK-1). The NP-IKKε interaction was highly conserved among arenaviruses from different clades. In LCMV-infected cells, IKKε colocalized with NP but not with MAVS located on the outer membrane of mitochondria. LCMV NP bound the kinase domain (KD) of IKKε (IKBKE) and blocked its autocatalytic activity and its ability to phosphorylate IRF3, without undergoing phosphorylation. Together, our data identify IKKε as a novel target of arenavirus NP. Engagement of NP seems to sequester IKKε in an inactive complex. Considering the important functions of IKKε in innate antiviral immunity and other cellular processes, the NP-IKKε interaction likely plays a crucial role in arenavirus-host interaction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hemorrhagic fevers caused by arenaviruses are among the most devastating emerging human diseases. Considering the number of individuals affected, the current lack of a licensed vaccine, and the limited therapeutic options, arenaviruses are arguably among the most neglected tropical pathogens and the development of efficacious anti-arenaviral drugs is of high priority. Over the past years significant efforts have been undertaken to identify novel potent inhibitors of arenavirus infection. High throughput screening of small molecule libraries employing pseudotype platforms led to the discovery of several potent and broadly active inhibitors of arenavirus cell entry that are effective against the major hemorrhagic arenaviruses. Mechanistic studies revealed that these novel entry inhibitors block arenavirus membrane fusion and provided novel insights into the unusual mechanism of this process. The success of these approaches highlights the power of small molecule screens in antiviral drug discovery and establishes arenavirus membrane fusion as a robust drug target. These broad screenings have been complemented by strategies targeting cellular factors involved in productive arenavirus infection. Approaches targeting the cellular protease implicated in maturation of the fusion-active viral envelope glycoprotein identified the proteolytic processing of the arenavirus glycoprotein precursor as a novel and promising target for anti-arenaviral strategies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

SummaryResearch projects presented in this thesis aimed to investigate two major aspects of the arenaviruses life cycle in the host cell: viral entry and the biosynthesis of the viral envelope glycoprotein.Old World arenaviruses (OWAV), such as Lassa virus (LASV) and lymphocytic choriomeningitis virus (LCMV), attach to the cell by binding to their receptor, alpha-dystroglycan. Virions are then internalized by a largely unknown pathway of endocytosis and delivered to the late endosome/lysosome where fusion occurs at low pH. In the major project of my thesis, we sought to identify cellular factors involved in OWAV cell entry. Our work indicates that OWAV cell entry requires microtubular transport and a functional multivesicular body (MVB) compartment. Infection indeed depends on phosphatidyl inositol 3-kinase (PI3K) activity and lysobisphosphatidic acid (LBPA), a lipid found in membranes of intraluminal vesicles (ILVs) of the MVB. We further found a requirement of factors that are part of the endosomal sorting complex required for transport (ESCRT), involved in the formation of ILVs. This suggests an ESCRT-mediated sorting of virus- receptor complex during the entry process.During viral replication, biosynthesis of viral glycoprotein takes place in the endoplasmic reticulum (ER) of the host cell. When protein load exceeds the folding capacity of the ER, the accumulation of unfolded proteins is sensed by three ER resident proteins, activating transcription factor 6 (ATF6), inositol-requiring enzyme 1 (IRE1) and PKR-like ER kinase (PERK), whose signaling induces the cellular unfolded protein response (UPR). Our results indicate that acute LCMV infection transiently induces the activation of the ATF6 branch of the UPR, whereas the PERK, and IRE1 axis of UPR are neither triggered nor blocked during infection. Our data also demonstrate that activation of ATF6 pathway is required for optimal viral replication during acute infection.The formation of the mature, fusion-active form of arenaviruses glycoproteins requires proteolytic cleavage mediated by the cellular protease subtilisin kexin isozyme-1 (SKI-l)/site-l protease (SIP). We show that targeting the SKI-1/S1P enzymatic activity with specific inhibitors is a powerful strategy to block arenaviruses productive infection. Moreover, characterization of protease function highlights differences in processing between cellular and viral substrates, opening new possibilities in term of drug development against human pathogenic arenaviruses.RésuméLes projets de recherche présentés dans cette thèse visaient à étudier deux aspects du cycle de vie des arenavirus: l'entrée du virus dans la cellule hôte et la biosynthèse de la glycoprotéine durant la réplication virale.Les arenavirus du vieux monde (OWAV), tels que le virus de Lassa (LASV) et le virus de la chorioméningite lymphocytaire (LCMV) s'attachent à la cellule hôte en se liant à leur récepteur, l'alpha-dystroglycane. Les virions sont ensuite intemalisés par une voie d'endocytose inconnue et livrés à l'endosome tardif/lysosome, où le pH acide permet la fusion entre l'enveloppe virale et la membrane du compartiment. Le projet principal de ma thèse consistait à identifier les facteurs cellulaires impliqués dans l'entrée des OWAV dans la cellule hôte. Nos résultats indiquent que l'entrée des OWAV nécessite le transport microtubulaire et la présence d'un corps multivésiculaire (MVB) fonctionnel. L'infection dépend en effet de l'activité de phosphatidyl inositol 3-kinase (PI3K) et de lysobisphosphatidic acid (LBPA), un lipide présent dans les membranes des vésicules intraluminales (ILVs) du MVB. Nous avons également trouvé l'implication de facteurs constituant l'endosomal sorting complex required for sorting (ESCRT) qui joue un rôle dans la formation des ILVs. Ces donnés suggèrent l'incorporation du complexe virus-récepteur dans des ILVs durant le processus d'entrée.Lors de la réplication virale, la biosynthèse de la glycoprotéine virale a lieu dans le réticulum endoplasmique (ER) de la cellule hôte. Lorsque la charge de protéines nouvellement synthétisées excède la capacité de pliage des protéines dans le ER, l'accumulation de protéines mal pliées est détectée par trois facteurs: activating transcription factor 6 (ATF6), inositol-requiring enzyme 1 (IRE1) et PKR-like ER kinase (PERK). Leur signalisation constitue la réponse cellulaire face aux protéines mal pliées (UPR). Nos résultats montrent que l'infection aiguë avec LCMV induit transitoirement l'activation de la voie de signalisation ATF6 alors que les axes PERK et IRE1 de l'UPR ne sont ni induits ni bloqués pendant l'infection. Nos données prouvent également que l'activation de la voie ATF6 est nécessaire à une réplication virale optimale lors de l'infection aiguë avec LCMV.La maturation des glycoprotéines des arenavirus nécessite un clivage protéolytique par la protéase cellulaire subtilisin kexin isozyme-1 (SKI-l)/site-l protease (SIP). Nous avons démontré que le ciblage de l'activité enzymatique de SKI-1/SIΡ avec des inhibiteurs spécifiques est une stratégie prometteuse pour bloquer l'infection par les arenavirus. La caractérisation du mécanisme d'action de la protéase a, par ailleurs, révélé des différences au niveau du clivage entre les substrats cellulaires et viraux, ce qui ouvre de nouvelles perspectives en terme de développement de médicaments contre les arenavirus pathogènes pour l'homme.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Arenaviruses are a large group of emerging viruses including several causative agents of severe hemorrhagic fevers with high mortality in man. Considering the number of people affected and the currently limited therapeutic options, novel efficacious therapeutics against arenaviruses are urgently needed. Over the past decade, significant advances in knowledge about the basic virology of arenaviruses have been accompanied by the development of novel therapeutics targeting different steps of the arenaviral life cycle. High-throughput, small-molecule screens identified potent and broadly active inhibitors of arenavirus entry that were instrumental for the dissection of unique features of arenavirus fusion. Novel inhibitors of arenavirus replication have been successfully tested in animal models and hold promise for application in humans. Late in the arenavirus life cycle, the proteolytic processing of the arenavirus envelope glycoprotein precursor and cellular factors critically involved virion assembly and budding provide further promising 'druggable' targets for novel therapeutics to combat human arenavirus infection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The highly pathogenic Old World arenavirus Lassa virus (LASV) and the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) use α-dystroglycan as a cellular receptor and enter the host cell by an unusual endocytotic pathway independent of clathrin, caveolin, dynamin, and actin. Upon internalization, the viruses are delivered to acidified endosomes in a Rab5-independent manner bypassing classical routes of incoming vesicular trafficking. Here we sought to identify cellular factors involved in the unusual and largely unknown entry pathway of LASV and LCMV. Cell entry of LASV and LCMV required microtubular transport to late endosomes, consistent with the low fusion pH of the viral envelope glycoproteins. Productive infection with recombinant LCMV expressing LASV envelope glycoprotein (rLCMV-LASVGP) and LCMV depended on phosphatidyl inositol 3-kinase (PI3K) as well as lysobisphosphatidic acid (LBPA), an unusual phospholipid that is involved in the formation of intraluminal vesicles (ILV) of the multivesicular body (MVB) of the late endosome. We provide evidence for a role of the endosomal sorting complex required for transport (ESCRT) in LASV and LCMV cell entry, in particular the ESCRT components Hrs, Tsg101, Vps22, and Vps24, as well as the ESCRT-associated ATPase Vps4 involved in fission of ILV. Productive infection with rLCMV-LASVGP and LCMV also critically depended on the ESCRT-associated protein Alix, which is implicated in membrane dynamics of the MVB/late endosomes. Our study identifies crucial cellular factors implicated in Old World arenavirus cell entry and indicates that LASV and LCMV invade the host cell passing via the MVB/late endosome. Our data further suggest that the virus-receptor complexes undergo sorting into ILV of the MVB mediated by the ESCRT, possibly using a pathway that may be linked to the cellular trafficking and degradation of the cellular receptor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Primary sensory neurons which innervate neuromuscular spindles in the chicken are calbindin-immunoreactive. The influence exerted by developing skeletal muscle on the expression of calbindin immunoreactivity by subpopulations of dorsal root ganglion (DRG) cells in the chick embryo was tested in vitro in coculture with myoblasts, in conditioned medium (CM) prepared from myoblasts and in control cultures of DRG cells alone. Control cultures of DRG cells grown at the 6th embryonic day (E6) did not show any calbindin-immunostained ganglion cell. In coculture of myoblasts previously grown for 14 days, about 3% of calbindin-immunoreactive ganglion cells were detected while about 1% were observed in some cultures grown in CM. Fibroblasts from various sources were devoid of effect. Skin or kidney cells were more active than myoblasts to initiate calbindin expression by subpopulations of DRG cells in coculture or, to a lesser degree, in CM. The results suggest that cellular factors would rather induce calbindin expression in certain sensory neurons than ensure a selective neuronal survival.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Newborn neurons are generated in the adult hippocampus from a pool of self-renewing stem cells located in the subgranular zone (SGZ) of the dentate gyrus. Their activation, proliferation, and maturation depend on a host of environmental and cellular factors but, until recently, the contribution of local neuronal circuitry to this process was relatively unknown. In their recent publication, Song and colleagues have uncovered a novel circuit-based mechanism by which release of the neurotransmitter, γ-aminobutyric acid (GABA), from parvalbumin-expressing (PV) interneurons, can hold radial glia-like (RGL) stem cells of the adult SGZ in a quiescent state. This tonic GABAergic signal, dependent upon the activation of γ(2) subunit-containing GABA(A) receptors of RGL stem cells, can thus prevent their proliferation and subsequent maturation or return them to quiescence if previously activated. PV interneurons are thus capable of suppressing neurogenesis during periods of high network activity and facilitating neurogenesis when network activity is low.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The pathological formation of proteinaceous aggregates that accumulate into the brain cells of patients are hallmarks of neurodegenerative diseases such as Alzheimer's disease, amyotrophic lateral sclerosis and the heterogeneous group of polyglutamine (polyQ) diseases. In the polyQ diseases, the most upstream events of the pathogenic cascade are the misfolding and aggregation of proteins, such as huntingtin in Huntington's disease, that contain expanded stretch of glutamine residues above 35--‐40 repeats. This expanded polyQ stretch triggers the misfolding and aggregation of cytotoxic polyQ proteins in the neurons that cause cell death through different processes, like apoptosis, excessive inflammation, formation of free radicals, eventually leading to neuronal loss and neurodegeneration. This study focuses on the cellular network of chaperone proteins that can prevent protein aggregation by binding misfolding intermediates and may, as in the case of HSP70, actively unfold misfolded proteins into refoldable non--‐toxic ones (Hinault et al., 2010; Sharma et al., 2011). The chaperones can also collaborate with the proteasome to convert stable harmful proteins into harmless amino acids. Thus, the chaperone proteins that are the most important cellular factors of prevention and curing of protein misfolding, are negatively affected by aging (Morley et al., 2002) and fail to act properly in the neurons of aged persons, which eventually may lead to neurodegenerative pathologies. The general aim of this research was to identify least toxic drugs that can upregulate the expression of chaperone genes in cells suffering from polyQ--‐ mediated protein aggregation and degeneration. The specific aim of this study was to observe the effect of ten drugs on polyQ aggregation in a recombinant nematode Caenorhabditis elegans expressing a chimeric protein containing a sequence of 35 glutamines (Q35) fused to the green fluorescent protein in muscle cells, which causes an age--‐ and temperature--‐ dependent phenotype of accelerated paralysis. The drugs were selected after having proven their causing the overexpression of chaperone proteins in a previous wide screening of 2000 drugs on the moss plant Physcomitrella patens. The screening that we performed in this study was on these ten drugs. It suggested that piroxicam and anisindione were good reducers of polyglutamine disease mediated paralysis. A hypothesis can be made that they may act as good enhancers of the heat shock response, which causes the overexpression of many HSP chaperones and thus reduce motility impairment of polyQ disease expressing nematodes. Piroxicam was found to have the greatest effect on reducing polyQ35 proteins aggregates mediated paralysis in a dose--‐dependent manner but was also found to either have a toxic effect on wild type C.elegans, either to change its natural motility behavior, eventually reducing its motility in both cases. Chloroform should be preferred over DMSO as a drug solvent as it appears to be less toxic to C.elegans.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The tropism of retroviruses relies on their ability to exploit cellular factors for their replication as well as to avoid host-encoded inhibitory activities such as TRIM5α. N-tropic murine leukemia virus (MLV) is sensitive to human TRIM5α restriction, whereas human immunodeficiency virus type 1 (HIV1) escapes this antiviral factor. We showed previously that mutation of four critical amino acid residues within the capsid (CA) can render MLV resistant to huTRIM5α. Here, we exploit the high degree of conservation in the tertiary structure of retroviral capsids to map the corresponding positions on the HIV1 capsid. We then demonstrate that, by introducing changes at some of these positions, HIV1 becomes sensitive to huTRIM5α restriction, a phenomenon reinforced by additionally mutating the nearby cyclophilin A (CypA)-binding loop of the viral protein. These results indicate that retroviruses have evolved similar mechanisms to escape TRIM5α restriction, via the interference of structurally homologous determinants in the viral capsid.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The distribution of immunoreactivity for the neurofilament triplet class of intermediate filament proteins was examined in the hippocampus of young, adult and elderly control cases and compared to that of Alzheimer's disease cases. In a similar fashion to non-human mammalian species, pyramidal neurons in the CA1 region showed a very low degree of neurofilament triplet immunoreactivity in the three younger control cases examined. However, in the other control cases of 49 years of age and older, many CA1 pyramidal neurons showed elevated neurofilament immunoreactivity. In the Alzheimer's disease cases, most of the surviving CA1 neurons showed intense labeling for the neurofilament triplet proteins, with many of these neurons giving off abnormal "sprouting" processes. Double labeling demonstrated that many of these neurons contained tangle-like or granular material that was immunoreactive for abnormal forms of tau and stained with thioflavine S, indicating that these neurons are in a transitional degenerative stage. An antibody to phosphorylated neurofilament proteins labeled a subset of neurofibrillary tangles in the Alzheimer's disease cases. However, following formic acid pre-treatment, the number of neurofibrillary tangles showing phosphorylated neurofilament protein immunoreactivity increased, with double labeling confirming that all of the tau-immunoreactive neurofibrillary tangles were also immunoreactive for phosphorylated neurofilament proteins. Immunoblotting demonstrated that there was a proportionately greater amount of the neurofilament triplet subunit proteins in hippocampal tissue from Alzheimer's disease cases as compared to controls. These results indicate that there are changes in the cytoskeleton of CA1 neurons associated with age which are likely to involve an increase in the level of neurofilament proteins and may be a predisposing factor contributing towards their high degree of vulnerability in degenerative conditions such as Alzheimer's disease. The cellular factors affecting hippocampal neurons during aging may be potentiated in Alzheimer's disease to result in even higher levels of intracellular neurofilament proteins and the progressive alterations of neurofilaments and other cytoskeletal proteins that finally results in neurofibrillary tangle formation and cellular degeneration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Antifungal therapy is a central component of patient management for acute and chronic mycoses. Yet, treatment choices are restricted because of the sparse number of antifungal drug classes. Clinical management of fungal diseases is further compromised by the emergence of antifungal drug resistance, which eliminates available drug classes as treatment options. Once considered a rare occurrence, antifungal drug resistance is on the rise in many high-risk medical centers. Most concerning is the evolution of multidrug- resistant organisms refractory to several different classes of antifungal agents, especially among common Candida species. The mechanisms responsible are mostly shared by both resistant strains displaying inherently reduced susceptibility and those acquiring resistance during therapy. The molecular mechanisms include altered drug affinity and target abundance, reduced intracellular drug levels caused by efflux pumps, and formation of biofilms. New insights into genetic factors regulating these mechanisms, as well as cellular factors important for stress adaptation, provide a foundation to better understand the emergence of antifungal drug resistance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study of mechanisms which control gene expression in trypanosomatids has developed at an increasing rate since 1989 when the first successful DNA transfection experiments were reported. Using primarily Trypanosoma brucei as a model, several groups have begun to elucidate the basic control mechanisms and to define the cellular factors involved in mRNA transcription, processing and translation in these parasites. This review focuses on the most recent studies regarding a subset of genes that are expressed differentially during the life cycle of three groups of parasites. In addition to T. brucei, I will address studies on gene regulation in a few species of Leishmania and the results obtained by a much more limited group of laboratories studying gene expression in Trypanosoma cruzi. It is becoming evident that the regulatory strategies chosen by different species of trypanosomatids are not similar, and that for these very successful parasites it is probably advantageous to employ multiple mechanisms simultaneously. In addition, with the increasing numbers of parasite genes that have now been submitted to molecular dissection, it is also becoming evident that, among the various strategies for gene expression control, there is a predominance of regulatory pathways acting at the post-transcriptional level.