56 resultados para Cellobiose
Resumo:
Zirconia modified SBA-15 becomes a very active catalyst for the selective hydrolysis of cellobiose to glucose after sulfation. Spectroscopic investigations indicate the presence of Bronsted acid sites with similar properties to those present in conventional sulfated zirconia. Indications are found that the sulfate groups attached to zirconia interact with silanol groups of SBA-15. The catalytic activity in cellobiose hydrolysis correlates well with results for temperature-programmed decomposition of i-propylamine for a range of sulfated ZrO2/SBA-15 catalysts. A glucose yield of 60% during cellobiose hydrolysis at a reaction time of 90 min at 160 degrees C is obtained.
Resumo:
The selective fermentation by human gut bacteria of gluco-oligosaccharides obtained from the reaction between the glucosyl group of sucrose and cellobiose, catalyzed by dextransucrases (DSR) from Leuconostoc mesenteroides, has been evaluated. Oligosaccharides were fractionated according to their molecular weight, and their effect on the growth of different bacterial groups was studied. To determine the structure (position and configuration of glycosidic linkages)�function relationship, their properties were compared to those of DSR maltose acceptor products (DSRMal) and of recognized prebiotic carbohydrates (fructo-oligosaccharides, FOS). Cellobiose acceptor products (DSRCel) showed bifidogenic properties similar to those of FOS. However, no significant differences related to molecular weight or isomeric configurations were found for DSRCel and DSRMal products.
Resumo:
Upgrade of biomass to valuable chemicals is a central topic in modern research due to the high availability and low price of this feedstock. For the difficulties in biomass treatment, different pathways are still under investigation. A promising way is in the photodegradation, because it can lead to greener transformation processes with the use of solar light as a renewable resource. The aim of my work was the research of a photocatalyst for the hydrolysis of cellobiose under visible irradiation. Cellobiose was selected because it is a model molecule for biomass depolymerisation studies. Different titania crystalline structures were studied to find the most active phase. Furthermore, to enhance the absorption of this semiconductor in the visible range, noble metal nanoparticles were immobilized on titania. Gold and silver were chosen because they present a Surface Plasmon Resonance band and they are active metals in several photocatalytic reactions. The immobilized catalysts were synthesized following different methods to optimize the synthetic steps and to achieve better performances. For the same purpose the alloying effect between gold and silver nanoparticles was examined.
Resumo:
Microorganisms play key roles in biogeochemical cycling by facilitating the release of nutrients from organic compounds. In doing so, microbial communities use different organic substrates that yield different amounts of energy for maintenance and growth of the community. Carbon utilization efficiency (CUE) is a measure of the efficiency with which substrate carbon is metabolized versus mineralized by the microbial biomass. In the face of global change, we wanted to know how temperature affected the efficiency by which the soil microbial community utilized an added labile substrate, and to determine the effect of labile soil carbon depletion (through increasing duration of incubation) on the community's ability to respond to an added substrate. Cellobiose was added to soil samples as a model compound at several times over the course of a long-term incubation experiment to measure the amount of carbon assimilated or lost as CO2 respiration. Results indicated that in all cases, the time required for the microbial community to take up the added substrate increased as incubation time prior to substrate addition increased. However, the CUE was not affected by incubation time. Increased temperature generally decreased CUE, thus the microbial community was more efficient at 15 degrees C than at 25 degrees C. These results indicate that at warmer temperatures microbial communities may release more CO2 per unit of assimilated carbon. Current climate-carbon models have a fixed CUE to predict how much CO2 will be released as soil organic matter is decomposed. Based on our findings, this assumption may be incorrect due to variation of CUE with changing temperature. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The probable modes of binding for methyl-α-d-sophoroside, methyl-β-d-sophoroside, laminariboise and cellobiose to concanavalin A have been determined using theoretical methods. Methyl-d-sophorosides can bind to concanavalin A in two modes, i.e. by placing their reducing as well as non-reducing sugar units in the carbohydrate specific binding site, whereas laminaribiose and cellobiose can reach the binding site only with their non-reducing glucose units. However, the probability for methyl-α-d-sophoroside to bind to concanavalin A with its reducing sugar residue as the occupant of the binding site is much higher than it is with its non-reducing sugar residue as the occupant of the sugar binding site. A few of the probable conformers of methyl-β-d-sophoroside can bind to concanavalin A with either the reducing or non-reducing glucose unit. Higher energy conformers of cellobiose or laminaribiose can reach the binding site with their non-reducing residues alone. The relative differences in the binding affinities of these disaccharides are mainly due to the differences in the availability of proper conformers which can reach the binding site and to non-covalent interactions between the sugar and the protein. This study also suggests that though the sugar binding site of concanavalin A accommodates a single sugar residue, the residue outwards from the binding site also interacts with concanavalin A, indicating the existence of extended concanavalin A carbohydrate interactions.
Resumo:
An extracellular β-glucosidase (EC 3.2.1.21) has been purified to homogeneity from the culture filtrate of a thermophilic fungus, Humicola lanuginosa (Griffon and Maublanc) Bunce, using duplicating paper as the carbon source. The enzyme was purified 82-fold with a 43% yield by ion-exchange chromatography and gel filtration. The molecular weight of the protein was estimated to be 135,000 by gel filtration and 110,000 by electrophoresis. The sedimentation coefficient was 10.5 S. It was an acidic protein containing high amounts of acidic amino acid residues. It was poor in sulphur-containing amino acids. It also contained 9% carbohydrate. The enzyme activity was optimum at pH 4.5 and at 60°C. The enzyme was stable in the pH range 6–9 for 24 h at 25°C. The enzyme had similar affinities towards cellobiose and p-nitrophenyl-β-d-glucoside with Km values of 0.44 mM and 0.50 mM, respectively. The enzyme was capable of hydrolysing larchwood xylan, xylobiose and p-nitrophenyl-β-d-xyloside, though to a lesser extent. The enzyme was specific for the β-configuration and glucose moiety in the substrate.
Resumo:
A .beta.-glucosidase and an endocellulase were purified from the culture filtrates of a thermophilic cellulolytic fungus Humicola insolens. Both the preparations were homogeneous by PAGE, ultracentrifugation and gel filtration (Mr 45,000). Ouchterlony immunodiffusion showed complete cross reactivity between the antibodies and the two enzyme antigens, indicating the presence of a common epitope on the two enzyme proteins. The two enzymes, however, differ in their amino acid composition and their substrate specificity. .beta.-Glucosidase acts on p-nitrophenyl .beta.-D-glucopyranoside and hydrolyses cellulose to release mainly glucose and small amounts of cellobiose from the non-reducing end. On the other hand, endocellulase hydrolyses cellulose to release cellopentaose, cellotetraose, cellotriose along with cellobiose and glucose and also hydrolyses larch wood xylan.
Resumo:
Hydrolysis of p-nitrophenyl-beta-D-glucoside by the beta-glucosidase of a thermophilic and cellulolytic fungus, Humicola insolens was stimulated by two-fold in the presence of high concentrations of beta-mercaptoethanol. This enzyme did not have any free sulfhydryl groups and high concentrations of beta-mercaptoethanol (5% v/v) reduced all of the three disulfide bonds present in the enzyme. In contrast, the hydrolysis of cellobiose and cellulose polymers was inhibited by 50% under the same conditions. Sodium dodecyl sulfate (1% w/v) even in combination with beta-mercaptoethanol did not show any significant effects on this enzyme. These unusual properties suggest that this enzyme may be of significant importance for understanding the structure of the enzyme.
Resumo:
Nearly one fourth of new medicinal molecules are biopharmaceutical (protein, antibody or nucleic acid derivative) based. However, the administration of these compounds is not always that straightforward due to the fragile nature of aforementioned domains in GI-tract. In addition, these molecules often exhibit poor bioavailability when administered orally. As a result, parenteral administration is commonly preferred. In addition, shelf-life of these molecules in aqueous environments is poor, unless stored in low temperatures. Another approach is to bring these molecules to anhydrous form via lyophilization resulting in enhanced stability during storage. Proteins cannot most commonly be freeze dried by themselves so some kind of excipients are nearly always necessary. Disaccharides are commonly utilized excipients in freeze-dried formulations since they provide a rigid glassy matrix to maintain the native conformation of the protein domain. They also act as "sink"-agents, which basically mean that they can absorb some moisture from the environment and still help to protect the API itself to retain its activity and therefore offer a way to robust formulation. The aim of the present study was to investigate how four amorphous disaccharides (cellobiose, melibiose, sucrose and trehalose) behave when they are brought to different relative humidity levels. At first, solutions of each disaccharide were prepared, filled into scintillation vials and freeze dried. Initial information on how the moisture induced transformations take place, the lyophilized amorphous disaccharide cakes were placed in vacuum desiccators containing different relative humidity levels for defined period, after which selected analyzing methods were utilized to further examine the occurred transformations. Affinity to crystallization, water sorption of the disaccharides, the effect of moisture on glass transition and crystallization temperature were studied. In addition FT-IR microscopy was utilized to map the moisture distribution on a piece of lyophilized cake. Observations made during the experiments backed up the data mentioned in a previous study: melibiose and trehalose were shown to be superior over sucrose and cellobiose what comes to the ability to withstand elevated humidity and temperature, and to avoid crystallization with pharmaceutically relevant moisture contents. The difference was made evident with every utilized analyzing method. In addition, melibiose showed interesting anomalies during DVS runs, which were absent with other amorphous disaccharides. Particularly fascinating was the observation made with polarized light microscope, which revealed a possible small-scale crystallization that cannot be observed with XRPD. As a result, a suggestion can safely be made that a robust formulation is most likely obtained by utilizing either melibiose or trehalose as a stabilizing agent for biopharmaceutical freeze-dried formulations. On the other hand, more experiments should be conducted to obtain more accurate information on why these disaccharides have better tolerance for elevating humidities than others.
Resumo:
An endocellulase (1→4)-β-d-glucan 4-glucanohydrolase was isolated from the culture filtrates of Chaetomium thermophile. The enzyme was homogeneous by PAGE and SDS-PAGE. The molecular weight was 36 000 by SDS-PAGE and 38 000 by gel filtration. It was a glycoprotein. From the amino acid composition, it was found to be rich in glycine, threonine, and aspartic and glutamic acids, but contained only low proportions of histidine and sulfur-containing amino acids. It was optimally active at pH 6 and at 60°. The enzyme did not hydrolyze cellobiose and cellotriose, but hydrolyzed cello-tetraose, -pentaose, and -hexaose at comparable rates. It was specific for molecules containing β-(1→4) linkages. It showed high activity towards amorphous cellulose, and the reaction products contained cellobiose to cellopentaose, showing that it effects random cleavage of cellulose.
Resumo:
Multiple forms of beta-glucosidase (EC 3.2.1.21) of Sporotrichum thermophile were produced when the fungus was grown in a cellulose medium. One beta-glucosidase was purified 16-fold from 6-d-old culture filtrates by ion-exchange and gel-filtration chromatography. The purified enzyme was free of cellulase activity. It hydrolysed aryl beta-D-glucosides and beta-D-linked diglucosides. It was optimally active at pH 5.4, at 65-degrees-C. The apparent K(m) values for p-nitrophenyl beta-D-glucoside (PNPG) and cellobiose were 0.29 and 0.83 mm, respectively. Glucose, fucose, nojirimycin and gluconolactone inhibited beta-glucosidase competitively. At high (> 1 mm) substrate concentration, beta-glucosidase catalysed a parallel transglycosylation reaction. The transglycosylation product formed from cellobiose appeared to be a beta-linked tetramer of glucose. Admixtures of beta-glucosidase and cellulase components showed that the concept of cellobiose inhibition of cellulases was not valid for all components of the cellulase system of S. thermophile. Beta-Glucosidase supplementation also stimulated cellulose hydrolysis by cellulases when there was no accumulation of cellobiose in reaction mixture.
Resumo:
In a medium containing cellulose as the carbon source, the rapid growth of Sporotrichum thermophile, the secretion of cellulases and the utilization of cellulose were well-correlated events. The production of beta-glucosidase in culture medium lagged behind cellulases, coinciding with the time of extensive autolysis of mycelia. By contrast, neither apparent autolysis nor secretion of beta-glucosidase occurred when S. thermophile was grown in medium containing cellobiose; the enzyme activity remained associated with mycelia. The release of beta-glucosidase in cellulose-grown cultures was correlated with the activity of the lytic enzyme in the cell wall. Immunocytochemical localization and biochemical characterization showed that a beta-glucosidase released in the cellulose medium was the same as that which remained associated with mycelia grown on cellobiose. The results indicated that the release of beta-glucosidase in the cellulose culture is incidental to the activity of the lytic enzymes which are strongly induced by cellulose. The observations minimize a functional role of the culture fluid beta-glucosidase in cellulolysis by the fungus. Rather, the available information suggests that the cellulases and beta-glucosidases associated with the hyphal cell wall may play a role in cellulolysis by the fungus. (C) 1994 Academic Press, Inc.
Resumo:
n a medium containing cellulose as the carbon source, the rapid growth of Sporotrichum thermophile, the secretion of cellulases and the utilization of cellulose were well-correlated events. The production of beta-glucosidase in culture medium lagged behind cellulases, coinciding with the time of extensive autolysis of mycelia. By contrast, neither apparent autolysis nor secretion of beta-glucosidase occurred when S. thermophile was grown in medium containing cellobiose; the enzyme activity remained associated with mycelia. The release of beta-glucosidase in cellulose-grown cultures was correlated with the activity of the lytic enzyme in the cell wall. Immunocytochemical localization and biochemical characterization showed that a beta-glucosidase released in the cellulose medium was the same as that which remained associated with mycelia grown on cellobiose. The results indicated that the release of beta-glucosidase in the cellulose culture is incidental to the activity of the lytic enzymes which are strongly induced by cellulose. The observations minimize a functional role of the culture fluid beta-glucosidase in cellulolysis by the fungus. Rather, the available information suggests that the cellulases and beta-glucosidases associated with the hyphal cell wall may play a role in cellulolysis by the fungus. (C) 1994 Academic Press, Inc.
Resumo:
Three new hydroxymethyl-linked non-natural disaccharide analogues, containing an additional methylene group in between the glycosidic linkage, were synthesized by utilizing 4-C-hydroxymethyl-alpha-D-glucopyranoside as the glycosyl donor. A kinetic study was undertaken to assess the hydrolytic stabilities of these new disaccharide analogues toward acid-catalyzed hydrolysis, at 60 degrees C and 70 degrees C. The studies showed that the disaccharide analogues were stable, by an order of magnitude, than naturally-occurring disaccharides, such as, cellobiose, lactose, and maltose. The first order rate constants were lower than that of methyl glycosides and the trend of hydrolysis rate constants followed that of naturally-occurring disaccharides. alpha-Anomer showed faster hydrolysis than the beta-anomer and the presence of axial hydroxyl group also led to faster hydrolysis among the disaccharide analogues. Energy minimized structures, derived through molecular modeling, showed that dihedral angles around the glycosidic bond in disaccharide analogues were nearly similar to that of naturally-occurring disaccharides. (C) 2011 Elsevier Ltd. All rights reserved.