942 resultados para Cell membranes.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interactions between the polyene antibiotic amphotericin B with dipalmitoylphosphatidylcholine were investigated in vesicles (using circular dichroism) and in chloroform solution (using circular dichroism and IH, I3C, and 31P nuclear magnetic resonance). The results show that amphotericin B readily aggregates in vesicles and that the extent of aggregation depends on the 1ipid:drug concentration ratio. Introduction of sterol molecules into the membrane hastens the process of aggregation of amphotericin B. In chloroform solutions amphotericin B strongly interacts with phospholipid molecules to form a stoichiometric complex. The results suggest that there are interactions between the conjugated heptene stretch of amphotericin B and the methylene groups of lipid acyl chains, while the sugar moiety interacts with the phosphate head group by the formation of a hydrogen bond. A model is proposed for the lipid-amphotericin B complex, in which amphotericin B interacts equally well with the two lipid acyl chains, forming a 1:l complex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Na+-K+ ATPases have been observed and located by in situ AFM and single molecule recognition technique, topography and recognition imaging (TREC) that is a unique technique to specifically identify single protein in complex during AFM imaging. Na+-K+ ATPases were well distributed in the inner leaflet of cell membranes with about 10% aggregations in total recognized proteins. The height of Na+-K+ ATPases measured by AFM is in the range of 12-14 nm, which is very consistent with the cryoelectron microscopy result. The unbinding force between Na+-K+ ATPases in the membrane and anti-ATPases on the AFM tip is about 80 pN with the apparent loading rate at 40 nN/s.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Layer-by-layer (LBL) self-assembly is a simple and elegant method of constructing organic-inorganic composite thin films from environmentally benign aqueous solutions. In this paper, we utilize this method to develop proton-exchange membranes for fuel cells. The multilayer film is constructed onto the surface of sulfonated poly(arylene ether ketone) (SPAEK-COOH) membrane by LBL self-assembly of polycation chitosan (CTS) and negatively charged inorganic particle phosphotungstic acid (VIA). The highly conductive inorganic nanoparticles ensure SPAEK-COOH-(CTS/PTA)(n) membranes to maintain high proton conductivity values up to 0.086 S cm(-1) at 25 degrees C and 0.24S cm(-1) at 80 degrees C, which are superior than previous LBL assembled electrolyte systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

White spot syndrome virus (WSSV) is a major shrimp pathogen that has a widespread negative affect on shrimp production in Asia and the Americas. It is known that WSSV infects shrimp cells through viral attachment proteins (VAP) that bind with shrimp cell receptors. However, the identity of both WSSV VAP and shrimp cell receptors remains unclear. We used digoxigenin (DIG)labeled shrimp hemocyte and gill cell membranes to bind to WSSV proteins immobilized on nitrocellulose membranes, and 4 putative WSSV VAP (37 kDa, 39 kDa and 2 above 97 kDa) were identified. Mass spectrometric analysis identified the 37 kDa putative VAP as the product of WSSV gene VP281.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In plasma membranes derived from bovine mesenteric lymphatic smooth muscle cells, guanine nucleotide and forskolin stimulated adenylyl cyclase (AC) activity in a concentration-dependent manner, indicative of the presence of the stimulatory G-protein G(s) linked to AC. There was no significant enzyme inhibition by low concentrations of guanine nucleotide and no effect on basal or guanine nucleotide-stimulated activity following pertussis toxin treatment of cells, suggesting the absence of G(1) linked to inhibition of AC. Furthermore, there was no effect of adrenaline, isoprenaline or clonidine on basal or forskolin-stimulated activities, nor was there any specific binding of the beta-adrenoceptor ligand [I-125]cyanopindolol to membranes, suggesting that cate-cholamine receptors do not modulate AC activity in these membranes. Pertussis toxin-mediated ADP ribosylation of membrane proteins and Western immunoblotting analysis revealed the presence of G-protein subunits G(alpha l2), G(alpha q), G(alpha 11) and G(beta 1). In experiments designed to identify a possible effector enzyme for these G-proteins, membranes were screened with a range of antibodies raised against phospholipase C (PLC) beta, gamma and delta isozymes. Though no evidence was obtained by Western blotting for any of these proteins, PLC activity was concentration-dependently stimulated by Ca2+, but not by AlF4-, GTP[S], or purified G(beta gamma) subunits. Finally, no specific binding to membranes of the alpha(1)-adrenoceptor ligand [H-3]prazosin or the alpha(2)-adrenoceptor ligand [H-3]yohimbine was obtained. In conclusion, this study provides evidence for a G(s)-dependent stimulation of AC, and for the presence of G(2) and G(q11), which do not appear to regulate a PLC activity also identified in lymphatic smooth muscle cell membranes. Furthermore, neither AC nor PLC appear to be associated with catecholamine receptors. Copyright(C) 1996 Elsevier Science Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the present study was to standardize the analysis of zinc binding on human red blood cell (RBC) membranes in 20 normal adults. The displacement studies revealed that at the maximal stable zinc concentration tested (600 muM), 57% (mean) of the bound Zn-65 was displaced and to displace half maximal Zn-65, the stable zinc concentration was 300 muM. Scatchard plots revealed two classes of binding sites for zinc on RBC membranes: one with higher affinity, Kd = 1.20 x 10(-5) M (site I), and the other with lower affinity, Kd = 2.77 x 10(-4) M (site II). Binding sites occupancy was 97% means and 58.5% means for sites I and 11, respectively. The displacement was affected by temperature, membrane protein concentration, freezing, thawing, and dialysis. Other metal cations, including Co++, Fe++, and Mn++, had very little effect on Zn-65 displacement, in contrast copper displaced Zn-65 from its binding sites on RBC membranes. Zinc binding to RBC membranes was rapid and readily reversible in a dynamic equilibrium with its binding sites. It is anticipated that this method will be applicable to studies of a wide variety of diseases specifically related to zinc metabolism in humans as well as in animals. (C) 1994 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As the elastic response of cell membranes to mechanical stimuli plays a key role in various cellular processes, novel biophysical strategies to quantify the elasticity of native membranes under physiological conditions at a nanometer scale are gaining interest. In order to investigate the elastic response of apical membranes, elasticity maps of native membrane sheets, isolated from MDCK II (Madine Darby Canine kidney strain II) epithelial cells, were recorded by local indentation with an Atomic Force Microscope (AFM). To exclude the underlying substrate effect on membrane indentation, a highly ordered gold coated porous array with a pore diameter of 1.2 μm was used to support apical membranes. Overlays of fluorescence and AFM images show that intact apical membrane sheets are attached to poly-D-lysine coated porous substrate. Force indentation measurements reveal an extremely soft elastic membrane response if it is indented at the center of the pore in comparison to a hard repulsion on the adjacent rim used to define the exact contact point. A linear dependency of force versus indentation (-dF/dh) up to 100 nm penetration depth enabled us to define an apparent membrane spring constant (kapp) as the slope of a linear fit with a stiffness value of for native apical membrane in PBS. A correlation between fluorescence intensity and kapp is also reported. Time dependent hysteresis observed with native membranes is explained by a viscoelastic solid model of a spring connected to a Kelvin-Voight solid with a time constant of 0.04 s. No hysteresis was reported with chemically fixated membranes. A combined linear and non linear elastic response is suggested to relate the experimental data of force indentation curves to the elastic modulus and the membrane thickness. Membrane bending is the dominant contributor to linear elastic indentation at low loads, whereas stretching is the dominant contributor for non linear elastic response at higher loads. The membrane elastic response was controlled either by stiffening with chemical fixatives or by softening with F-actin disrupters. Overall, the presented setup is ideally suitable to study the interactions of the apical membrane with the underlying cytoskeleton by means of force indentation elasticity maps combined with fluorescence imaging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FGFRL1 (fibroblast growth factor receptor like 1) is the fifth and most recently discovered member of the fibroblast growth factor receptor (FGFR) family. With up to 50% amino acid similarity, its extracellular domain closely resembles that of the four conventional FGFRs. Its intracellular domain, however, lacks the split tyrosine kinase domain needed for FGF-mediated signal transduction. During embryogenesis of the mouse, FGFRL1 is essential for the development of parts of the skeleton, the diaphragm muscle, the heart, and the metanephric kidney. Since its discovery, it has been hypothesized that FGFRL1 might act as a decoy receptor for FGF ligands. Here we present several lines of evidence that support this notion. We demonstrate that the FGFRL1 ectodomain is shed from the cell membrane of differentiating C2C12 myoblasts and from HEK293 cells by an as yet unidentified protease, which cuts the receptor in the membrane-proximal region. As determined by ligand dot blot analysis, cell-based binding assays, and surface plasmon resonance analysis, the soluble FGFRL1 ectodomain as well as the membrane-bound receptor are capable of binding to some FGF ligands with high affinity, including FGF2, FGF3, FGF4, FGF8, FGF10, and FGF22. We furthermore show that ectopic expression of FGFRL1 in Xenopus embryos antagonizes FGFR signaling during early development. Taken together, our data provide strong evidence that FGFRL1 is indeed a decoy receptor for FGFs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The protozoan parasite Plasmodium is transmitted by female Anopheles mosquitoes and undergoes obligatory development within a parasitophorous vacuole in hepatocytes before it is released into the bloodstream. The transition to the blood stage was previously shown to involve the packaging of exoerythrocytic merozoites into membrane-surrounded vesicles, called merosomes, which are delivered directly into liver sinusoids. However, it was unclear whether the membrane of these merosomes was derived from the parasite membrane, the parasitophorous vacuole membrane or the host cell membrane. This knowledge is required to determine how phagocytes will be directed against merosomes. Here, we fluorescently label the candidate membranes and use live cell imaging to show that the merosome membrane derives from the host cell membrane. We also demonstrate that proteins in the host cell membrane are lost during merozoite liberation from the parasitophorous vacuole. Immediately after the breakdown of the parasitophorous vacuole membrane, the host cell mitochondria begin to degenerate and protein biosynthesis arrests. The intact host cell plasma membrane surrounding merosomes allows Plasmodium to mask itself from the host immune system and bypass the numerous Kupffer cells on its way into the bloodstream. This represents an effective strategy for evading host defenses before establishing a blood stage infection.